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Abstract

The comovement between returns to stocks and nominal Treasury bonds varies

over time in both magnitude and direction. Earlier research attempts to interpret

this phenomenon as a consequence of variations in the link between inflation and fu-

ture economic activity. I present some opposing empirical evidence, and instead argue

that in the data, the comovement between stock and nominal bond returns could be

driven by real factors. I build a New Keynesian model that generates this behavior

through the joint dynamics of output, inflation, and interest rates. The model fea-

tures two types of persistent shocks to productivity growth: mean-reverting “cyclical”

and permanent “trend” shocks. The relative importance of these two shocks varies

stochastically over time. I develop a state-space representation of this nonlinear model

with stochastic volatility and estimate it using a particle Markov-Chain Monte-Carlo

(MCMC) approach. The model could explain the observed patterns in stock-bond

return comovement.

Keywords: Production-based asset pricing, Stock returns, Bond returns, Time-varying

volatility, New Keynesian model, Nonlinear state-space model, Particle MCMC

JEL classification code: G12, E12, E58
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1 Introduction

The stock-bond return correlation is strongly time-varying. In particular, the sign of the

correlation turned from positive to negative in the late 1990s. There is a growing literature

documenting this time variation using sophisticated statistical models (see, e.g., Guidolin

and Timmermann (2006)) but much less work attempting to disentangle its macroeconomic

sources. These stylized facts raise the question of what macroeconomic forces determine the

risk exposure of U.S. Treasury bonds, and in particular the time variation of risk.

Most papers in the literature such as David and Veronesi (2013), Campbell et al. (2014),

Li (2011), Hasseltoft (2009), and Song (2017) focus on the correlation between stock and

nominal bonds returns and attempt to explain this phenomenon through variations of the

link between inflation and economic activity. This approach appears to be inconsistent with

the empirical evidence reported in this paper.

I document novel empirical evidence that the correlation between stock returns and

nominal bond returns is closely related to that between stock returns and real bond returns.

By using data from both US and UK, I find that this changing pattern of correlation between

stocks and bonds applies to both nominal and real bonds. During the mid 1980s, the stock-

bond correlation was as high as 60 percent and by early 2000s it dropped to levels as low

as −60 percent. What is more striking is that the correlation between stock returns and

nominal bond returns move closely with the correlation between stock and real bond returns.

This suggests that the correlation between stock and bond return could be driven by real

factors.

This paper investigates the possibility that productivity risk is an important source of

risk to explain joint movements of stocks and bonds. The contribution of this paper is

to add a time-varying real component to a New Keynesian model and show it can jointly

account for the dynamics of output, interest rates, inflation, and importantly stock-bond

return correlation.

The key mechanism of the model works through the cyclical and trend component of

productivity growth. The cyclical component of productivity growth mean-reverts: a positive

shock to productivity corresponds to lower expected consumption growth. Lower expected

consumption growth translates into lower real interest rates and higher prices for bonds.
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Stock and bond returns are, therefore, positively correlated in response to cyclical shocks.

The trend component of productivity growth contains a unit root. A positive shock to

productivity corresponds to higher expected future productivity growth. Higher expected

future productivity growth translates into higher real interest rates and lower prices for

bonds. In a New Keynesian framework with recursive preferences, the sign of the correlation

between stock returns and bond returns depend on the source of risk. Time-varying relative

variance of the cyclical and trend shocks to productivity growth determines the conditional

correlation between stock returns and bond returns.

Calibrations and simulations results support the possibility of productivity risk in driving

the dynamics of stocks and bonds returns. And the changing magnitude and composition of

cyclical and trend shocks perform well in explaining the conditional correlation between stock

and bond returns. The model is calibrated to the volatility of cyclical and trend volatility of

productivity growth over two samples of US data: pre-1998 and post-1998. Point estimates

suggest that the volatility of cyclical productivity shock decreases by around 20 percent from

the earlier period to the latter period, while the volatility of trend productivity doubles. The

calibrated model approximately matches the stock-bond correlation in both samples .

Subsequently, I investigate the fit of this model with stochastic volatility without imposing

breaks in the sample. I develop a state-space representation of this nonlinear model and use a

Bayesian particle Monte-Carlo Markov Chain method to estimate it. Due to the nonlinearity

nature of the model, the particle filter is used to approximate the likelihood.

The estimation of the model delivers three important empirical findings. First, the model

supports the notion that cyclical and trend components are very persistent. The estimated

persistence parameter is about 0.95 for the cyclical component, and 0.95 for the trend com-

ponent. Second, there could be substantial variations in the volatility of cyclical and trend

shocks. And using stock and bond returns data in the estimation is necessary to keep track

of the volatility movements. Third, despite that the stock-bond return correlation is not

directly targeted in the estimation, the estimated model could match the decline in the

correlation between stock and bond returns.
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2 Some Descriptive Measures of Stock-Bond Return

Comovement

This section summarizes some well-known, and some not so well-known, properties of

stock and bond returns. Section 2.1 and Section 2.2 focus on U.S. and U.K. markets respec-

tively.

2.1 U.S. Stock-Bond Return Correlation

Figure 1 displays yearly estimates of correlations between aggregate stock returns and

returns to both nominal and inflation-indexed long-term Treasury bonds. Yearly estimates

of correlation are produced using daily returns. Nominal returns are for the 10-year Treasury

bond and real returns are for the 10-year Treasury inflation protected bonds (TIPS). The

highest correlation between returns to stocks and returns to nominal bonds is 0.61 in year

1994, and the lowest correlation is -0.63 in year 2012. Guidolin and Timmermann (2006),

Baele et al. (2010), Campbell et al. (2014) and other authors all highlight this striking

pattern for nominal bonds shown in Figure 1 but don’t examine correlation between returns

to stocks and returns to real bonds. Returns to stocks and nominal bonds were positively

correlated throughout the 1970s, 1980s, and the first half of the 1990s. Estimates of the

correlation fluctuated over this period, but on average remain largely positive. In the latter

half of the 1990s, estimated correlations dropped sharply to less than zero. Estimates have

largely remained negative since then. The pattern carries over to returns calculated using

longer holding periods. For example, Figure 2 displays estimates of correlations produced

using monthly returns. The estimate for month t is the sample correlation of the 25 returns

for months t− 12 through t+ 12. Although details differ, the message in this figure matches

that in Figure 1.

Researchers attempting to explain this large, persistent variation in the stock-nominal

bond return correlation largely focus on the changing behavior of monetary policy and/or

inflation over the sample. Campbell et al. (2014) argues that changing correlations are driven

by regime shifts in the monetary policy reaction function. When the Fed tightens aggressively

in response to unexpected increases of inflation, the stock-bond return correlation is more
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positive. In regimes when the Fed is more accommodating, the stock-bond correlation is more

positive. Hasseltoft (2009) studies the implication of changing inflation volatility for stock-

bond return correlation. Inflation is assumed to be negatively associated with consumption

growth. David and Veronesi (2013) studies the joint dynamics of stock and bonds in an

endowment economy with exogenous economic regimes, in which inflation could be either

positively or negatively correlated with output growth.

However, evidence in Figures 1 and 2 casts considerable doubt on these stories. Returns

to inflation indexed bonds are available beginning with their introduction by the Treasury

in 1998. To my knowledge, this is the first paper that emphasizes the correlation between

returns to stocks and returns to inflation indexed bonds. A striking result is that during this

period estimated correlations of returns to stocks and returns to real bonds closely tracked

the stock-nominal bond return correlations. The correlation between these two yearly series

(i.e., the correlation between the two time series of yearly estimates of correlations) is 0.71.

This tight link suggests that the fundamental determinants of time-varying correlation apply

to both real and nominal bonds. It is of course possible that in the mid-1990s there was a

large regime change associated with inflation, which cannot be detected using more recent

data. We need a longer sample to examine this possibility.

2.2 U.K. Stock-Bond Return Correlation

In the United Kingdom, the history of real bonds goes back to 1986 when inflation was

still relatively high. Figure 3 is the U.K. version of Figure 1, displaying yearly estimates of

correlations between aggregate stock returns and returns to both nominal and real bonds

using daily returns. Stock and nominal bond return correlations are examined by Gusset

and Zimmermann (2015), but they do not extend their analysis to real bonds. Nominal

returns are for the 10-year gilts and real returns are for the returns the 10-year inflation

indexed gilts. 1 The highest correlation between returns to stocks and returns to nominal

bonds is 0.59 in 1994, while the lowest correlation observed is -0.61 in 2011. Similar to the

finding for U.S., returns to stocks and nominal bonds were largely positively correlated until

1Gilts are bonds that are issued by the British government, which are UK equivalent of US Treasury se-
curities. The data is available at http://www.bankofengland.co.uk/statistics/Pages/yieldcurve/archive.aspx
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the late 1990s, then largely negative. More importantly, the correlation between returns to

nominal bonds and stocks is closely related to the correlation between returns to real bonds

and stocks. The correlation between these two yearly series (i.e., the correlation between

two time series of yearly estimates of correlations) is 0.97. The correlations between stock

returns and inflation-indexed bond returns were also largely positive until the late 1990s,

then turned negative. The pattern also applies to returns calculated using longer holding

periods. For example, Figure 4 is the U.K. version of Figure 2. Estimates of correlations are

produced from monthly returns. The message in this figure largely matches that in Figure 3,

which are produced using daily returns. This tight link between returns of nominal and real

bonds is consistent with Duffee (2016), which finds that variances of news about expected

inflation account for between 10 to 20 percent of variances of yield shocks at a quarterly

frequency.

3 The Model

How important are cyclical and trend fluctuations for macroeconomic quantities and

prices? To answer this question, I develop a general equilibrium framework to quantitatively

account for both macroeconomic and financial moments.

It builds on the standard New Keynesian framework of Woodford (2003) and Gaĺı (2009).

There are three standard New Keynesian ingredients. First, the model features imperfect

competition in the good market: each firm produces a differentiated good for which it sets the

price, given a demand constraint. Second, Calvo (1983) type of price stickiness is introduced

by assuming that only a fraction of firms can reset their prices in any given period. Third,

the central bank in this economy sets the nominal interest rate according to a Taylor (1993)

type rule.

Following the finance literature, households in the economy derive felicity from consump-

tion and leisure following an Epstein and Zin (1989) and Weil (1989) type of utility function.

By introducing Epstein-Zin preferences, the model separates the elasticity of intertempo-

ral substitution and risk aversion coefficient and therefore better matches the asset pricing

moments.
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3.1 Firms

There exists a continuum of firms indexed by i ∈ [0, 1]. Each firm produces a differenti-

ated good, but they all use an identical technology, represented by the production function

Yt(i) = eztKα
t (eΓtNt(i))

1−α (1)

where Kt is the capital stock. The aggregate “final” output is produced from individual

goods such that

Yt ≡
(∫ 1

0

Yt(i)
1− 1

ε di

) ε
ε−1

(2)

where ε measures the degree of substitutability between individual goods.

There are two general approaches in the literature to model shocks to productivity growth.

One assumes that productivity growth follows a stationary process; thus the effects of shocks

on productivity growth die out over time. This approach is seen in Rudebusch and Swanson

(2012) and Kung (2015). Another assumes that productivity growth follows a unit root

process, as seen in Croce (2014) and Hsu et al. (2016).

The production function (1) includes both kinds of shocks, which are common across

firms. Their relative importance determines the sign of the stock-bond return correlation.

The stationary process is zt, with dynamics

zt = ρzzt−1 + eσz,t−1εz,t (3)

where εz,t represents independently and identically distributed draws from a normal distri-

bution with zero mean and standard deviation of 1. Stationarity is imposed by |ρz| < 1.

The unit root process is Γt, with dynamics

Γt+1 = Γt + gt =
t∑

s=0

gs

gt = (1− ρg)µg + ρggt−1 + eσg,t−1εg,t (4)
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where |ρg| < 1, and εg,t represents independently and identically distributed draws from a

normal distribution with zero mean and standard deviation 1. The term µg captures the

long-run mean growth rate of technology.

The volatility of cyclical and trend shocks follows

σz,t = (1− ρσz)σz + ρσzσz,t−1 + ησzεσz,t (5)

σg,t = (1− ρσg)σg + ρσgσg,t−1 + ησgεσg,t (6)

The main feature of the process is that the log standard deviations σz,t and σg,t are not

constants over time, as commonly assumed. The variation of σz,t and σg,t captures the

stochastic volatility of cyclical and trend shocks respectively. The shocks εσz,t and εσg,t are

normally distributed with mean zero and unit variance. The parameters σz (σg) and ηz (ηg)

controls mean volatility and the standard deviation of shocks to volatility for the cyclical

(trend) productivity volatility process. A high σz (σg) implies a high mean volatility of

cyclical (trend) productivity process, and a high ησz (ησg) implies large shocks to cyclical

(trend) volatility. Croce (2014) studies a production economy with stochastic volatility where

productivity growth follows a unit root.

3.2 Households

We assume that there exists a representative household with Epstein and Zin (1989) and

Weil (1989) preferences over the consumption good Ct and leisure Lt with the utility function

Vt satisfying:

Vt =
{

(1− β)λtU(Ct, Nt) + βEt[V 1−γ
t+1 ]

1−ψ
1−γ

} 1
1−ψ

(7)

where γ is the risk aversion coefficient and ψ is the inverse of intertemporal elasticity of

substitution. As highlighted in Albuquerque et al. (2016), I also allow for a preference

shock, λt, to the time rate of preference. The growth rate of the preference shock xλ,t follows
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an AR(1) process with shocks that are independent of all other shocks in the model

xλ,t = ρλxλ,t−1 + σλ,tηλ,t (8)

where ηλ,t ∼ N(0, 1). And the volatility σλ,t has the same form of dynamics as the cyclical

and trend shocks

σλ,t = (1− ρσλ)σλ + ρσλσλ,t−1 + ησλεσλ,t (9)

with the independent shocks to the volatility process denoted by ηλ,t ∼ N(0, 1). Ct is a

consumption index given by

Ct ≡
(∫ 1

0

Ct(i)
1− 1

ε di

) ε
ε−1

(10)

The instantaneous utility function is given by

U(Ct, Nt) =


C1−ψ
t

1−ψ − e
Γt(1−ψ)N

1+ϕ
t

1+ϕ
if ψ 6= 1

log(Ct)− eΓt(1−ψ)N
1+ϕ
t

1+ϕ
if ψ = 1

(11)

where ψ ≥ 0 and ϕ ≥ 0 determine, respectively, the curvature of the utility of consumption

and the disutility of labor. The analysis is considerably simplified by two properties of the

above utility function: (1) separability, that is Ucn,t = 0 and (2) the implied constancy

of the elasticities for the marginal utility of consumption and for the marginal disutility of

labor. The term Γ1−ψ
t is introduced to make the utility function consistent with the notion of

balanced growth path as seen in Rudebusch and Swanson (2012). The parameter Nt denotes

hours of work or employment. Parameter β ∈ (0, 1) is the discount factor. The notation

Et{.} denotes the expectational operator, conditional on information at time t.

The key advantage of using Epstein-Zin utility is that it breaks the link between intertem-

poral elasticity of substitution and the coefficient of relative risk aversion that has long been

noted in the literature regarding expected utility see, e.g., Weil (1989). Household risk aver-

sion to uncertain lotteries over Vt+1 is amplified by the additional parameter γ, a feature
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which is crucial for allowing us to fit both the asset pricing and macroeconomic facts below.

Note, when γ = ψ, the utility function coincides with the usual CRRA utility function.

3.2.1 The Marginal Rate of Substitution

The marginal rate of substitution (MRS) between neighboring dates in this economy is

given by 2

Mt,t+1 = β
UC,t+1

UC,t

λt+1

λt

[
Vt+1

(EtV 1−γ
t+1 )1/1−γ

]ψ−γ
(12)

In the case of γ = ψ, Mt,t+1 reduces to the usual formula for the marginal rate of substi-

tution when utility depends only on current period consumption. Therefore, my preference

specification nests the class of preferences studied by King et al. (1988).

It is useful to consider an asset that pays Ct as its dividend in each period. This asset is

a claim to all future consumption streams Ct+1, Ct+2, .... In the usual analysis of Epstein-Zin

preferences, one substitutes the return on an asset that pays consumption as its dividend

into the MRS. Denote the ex-dividend price of this asset as WU,t. The return for this asset

from t to t+ 1 is defined as

RW,t+1 =
Ct+1 +WU,t+1

WU,t

(13)

The appendix shows that the stochastic discount factor (12) can be expressed using the

return on this asset as

Mt,t+1 =

(
β
UC,t+1

UC,t

λt+1

λt

)1−χ (
R−1
w,t+1

)χ
(14)

The logarithm of the marginal rate of substitution (MRS) is

mt+1 = (1− χ)ρ+ (1− χ)xλ,t − (1− χ)ψ∆ct+1 − χrc,t+1

2Detailed derivation is provided in appendix.

10



where 1− χ = 1−γ
1−ψ .

The expression for the marginal rate of substitution in terms of an asset return is useful

for two reasons. First, expressing the marginal rate of substitution in terms of asset returns

will be important in the implementation of the approximation method for the model. Second,

it shows how the marginal rate of substitution changes from the usual form by introducing

Epstein-Zin preferences. Instead of the standard setup where only consumption matters, the

marginal rate of substitution now depends on the realization of the asset returns.

3.2.2 Budget Constraint

The maximization of utility (7) is subject to a sequence of flow budget constraints given

by

Pt

[
Ct +Kt+1 − (1− δ)Kt +

φ

2

(
Kt+1

Kt

− eµg
)2

Kt

]
+ qtBt = WtNt +Dt +Bt−1 (15)

Capital depreciates at the rate δ, and changes to the capital stock entail a quadratic adjust-

ment cost 3

φ

2

(
Kt+1

Kt

− eµg
)2

Kt

in which t = 0, 1, 2, ... The parameter Pt is the price of the consumption good, andWt denotes

the nominal wage (per hour or per worker, depending on the interpretation of Nt). The

symbol Bt represents the quantity of one-period nominally riskless discount bonds purchased

in period t and maturing in period t + 1. Each bond pays one unit of money at maturity,

and its price is Qt. Nominal dividends are represented by Dt, accruing to households as the

owner of firms. In addition to (15), it is assumed that households are subject to solvency

constraint that prevent them from engaging in Ponzi-type schemes. The following constraint

is assumed

lim
T→∞

Et
{
Mt,T

BT

PT

}
≥ 0 (16)

3This form of adjustment cost is motivated to ensure there is no adjustment costs in the steady state.
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for all t, where Mt,T ≡ βT−tUc,T/Uc,t is the stochastic discount factor. We also use St to

denote the market value of firms’ shares.

3.3 Optimal Price Setting

Following the formalism proposed in Calvo (1983), each firm may reset its price only

with probability 1 − θ in any given period, independent of the time elapsed since it last

adjusted its price. Thus, in each period a measure of 1−θ producers reset their prices, while

a fraction of θ keep them unchanged. As a result, the average duration of a price is given by

1
1−θ . Therefore, θ is the measure of price stickiness.

A firm reoptimizing in period t, will choose P ∗t that maximizes the current market value

of the profits generated while that price remains effective.

max
P ∗t

∞∑
k=0

θkEt
{
M$

t,t+k(P
∗
t Yt+k|t −Ψt+k(Yt+k|t)

}
(17)

subject to the sequence of demand constraints

Yt+k|t =

(
P ∗t
Pt+k

)−ε
Yt+k (18)

for k = 0, 1, 2, ..., , where M$
t,t+k ≡ βk(Uc,t+k/Uc,t)(Pt/Pt+k) denotes the nominal stochastic

discount factor, and Ψt(.) is the cost (nominal) function and Yt+k|t denotes output in period

t+ k for a firm that last reset its price in period t.

3.4 Central Bank

The central bank in the economy sets the nominal interest rate following a Taylor (1993)

policy rule

it = ρiit−1 + (1− ρi)[r∗ + φyỹt + φππ̃t] + εvt (19)
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where εv is an independently and identically distributed stochastic monetary policy shock

with mean zero and variance σ2
v,t. The volatility of monetary policy shock follows

σv,t = (1− ρσv)σv + ρσvσv,t−1 + ησvεσv,t (20)

Time-varying monetary policies have been hypothesized by Song (2017) and Campbell et

al. (2014) as sources of change for the stock-bond return correlation. In the presence of

time-varying monetary policy shocks, it would then be useful to evaluate how the change in

stock-bond return correlation can be attributed to time-varying cyclical and trend shocks.

The term ỹt denotes the deviation of detrended output from its steady state value where

yt ≡ log(Yt) − Γt, and π̃t denotes the deviation of inflation from its steady state. The

term σt Coefficients φπ and φy are chosen by the monetary authority, and assumed to be

non-negative. r∗ is the steady state level of real interest rate.

3.5 Equilibrium

In equilibrium, nominal wage Wt, the price of goods Pi,t and consumption sector inflation

πt are set to clear all markets

• Labor market clearing:

• Consumption-good market clearing:

Ct + It = Yt (21)

• Zero net supply of bonds:

it = −Et[m$
t,t+1] (22)

An equilibrium consists of prices and allocations such that (a) taking prices and wage as

given, each household’s allocations solves (7); (b) taking aggregate prices and wage as given,

firm’s allocation solve (17) ; (c) labor, consumption-good and bond markets clear. I’m solving
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for a symmetric equilibrium, in which all intermediate good firms choose the same price Pt,

employ the same amount of labor Nt and choose to hold the same amount of capital Kt.

3.6 Equity Pricing

I use a standard approach from the asset pricing literature that the stock market in this

model is a leveraged claim on future aggregate consumption. In each period, it pays out

consumption units Dt. The log of aggregate dividend is scaled log consumption.

dt = φct (23)

The parameter φ is capturing a broad concept of leverage, including operating leverage. The

interpretation of dividends as a levered claim on consumption is common in the asset pricing

literature (Abel (1990), Campbell (2003), Bansal and Yaron (2004) and etc).

Let WS,t be the real price of stocks, the law of one prices implies that

WS,t =
∞∑
s=1

Et[Mt,t+sDt+s] = Et[Mt,t+1(Dt+1 +WS,t+1)] (24)

3.7 Bond Pricing

The Euler equation implies that the price of nominal bonds satisfies that

P$
n,t = Et(Mt,t+1e

−πt+1P$
n−1,t+1) (25)

where P$
n,t is the price of a zero-coupon bond that matures on date t + n and pays 1 dollar

at time t+ n.

The yield-to-maturity on the n -period nominal bond is defined as

Y$
n,t = − 1

n
P$
n,t (26)
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Similarly, the price of a n -period real bond can be written as

Pn,t = Et[Mt,t+1Pn−1,t+1] (27)

and the corresponding yield-to-maturity is defined as

Yn,t = − 1

n
Pn,t (28)

4 Quantitative Implications

This section discusses the quantitative implications of the model. As the relative im-

portance of the productivity shocks in (3) and (4) could drive the sign of the stock-bond

return correlation, the intuition is easiest to see through a comparative statics exercise by

comparing two cases with fixed volatilities but where the relative importance of the cyclical

and trend shock differ. Therefore, the model analyzed in this section is the one without

stochastic volatility with the following assumption.

Fixed Volatility Assumption:

σz,t = σz,case, σg,t = σg,case (29)

The fixed volatility specification of productivity shocks follows Aguiar and Gopinath (2007).

My approach differs from theirs both in the focus (they examine capital flows of emerging

markets) and in the choice of parameters.4 In both sample, the volatility of monetary policy

shocks and preference shocks are calibrated to be the same , i.e., σv,t = σv, σλ,t = σλ, to

focus on the importance of productivity shocks in driving stock-bond return correlation.

4.1 Data and Summary Statistics

I use quarterly US data on output, inflation, interest rates, and aggregate stock returns

from 1960Q1-2015Q4. The productivity measure used is the labor productivity measure

4Naturally, the fixed volatility assumption is inconsistent with the motivating evidence that correlations
change over time. It also oversimplifies the asset-pricing setting, since investors do not have to consider the
possibility that relative volatilities will vary.
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from the Bureau of Labor Statistics. 5

4.2 Calibration

Table 1 presents the quarterly calibration for the parameters of the model. In this section,

I employ a model that leaves out many of the nominal frictions in standard business cycle

work in order to focus on the ability of the particular mechanism just described to generate

realistic nominal and real stock-bond return correlation. Panel A reports the values for

preference parameters. The elasticity of intertemporal substitution 1/σ is set to 0.5, which

is consistent with estimates in the micro literature (e.g., Vissing-Jorgensen (2002)) 6. The

coefficient of relative risk aversion is set to 10.0, which is standard values in the long-run

risk literature (e.g., Bansal and Yaron (2004)). The subjective discount factor is calibrated

to be 0.99.

Panel B reports the calibration of technological parameters. The desired markup is set to

be 1.2. The capital share α is set to 0.33, and the depreciation rate of capital is set to 0.02.

These three parameters are calibrated to standard values in the macroeconomic literature.

The price adjustment parameter θ is set to be 0.75, meaning that 25 percent of firms adjust

their prices in each period.

Panel C reports the parameter values for the productivity process. The quarterly per-

sistence parameter ρz is calibrated to 0.95 to match the first autocorrelation of expected

productivity growth. This value is in line with Rudebusch and Swanson (2012) and Kung

and Schmid (2010). The quarterly persistence parameter of the trend shock is also set to

be 0.98, which is in line with the monthly persistence parameter about 0.99 in Bansal and

Yaron (2004) and Schorfheide et al. (2018). In the next section, I estimate these persistence

parameters using the model with stochastic volatility, and find that these calibrated values

are close to the estimates.

Panel D reports the calibration of the monetary policy rule parameters. The parameter

governing the sensitivity of the interest rate to inflation ρπ is set to 1.5. The parameter

determining the sensitivity of the interest rate to output ρy is set to 0.1. The persistence

5The data is available at http://download.bls.gov/pub/time.series/pr/
6I also attempt to estimate the parameter σ using the model with stochastic volatility and find that σ is

significantly above 1.
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of monetary policy shock ρi is set to be 0.5. The volatility of interest rate shocks σv is set

to 0.3%. The magnitude of the preference shock is set to be 0.04%, which is close to the

estimate in Albuquerque et al. (2016). These parameter values are standard in the literature.

4.3 Evaluating the Fit of the Model

The goal of the current exercise is to see in a comparative static sense whether the model

reproduces observed stock-bond return correlation. The model is calibrated to two periods

of productivity growth differing only in the volatility of cyclical and trend shocks. The model

is solved in Dynare using a second-order approximation. I find that it can both provide a

reasonable fit to the usual business cycle properties of the data, and importantly produce the

striking change in the stock-bond return correlation discussed above. Table 2 summarizes

the model fit for two subperiods of US economy: pre-1998 and post-1998.

4.3.1 Estimating the Volatility of Cyclical and Trend Shocks

The magnitude of cyclical and trend shock volatility for both samples is estimated from

productivity data in pre-1998 and post-1998. In each sample, I conduct a maximum-

likelihood estimation of the productivity processes for the volatility of cyclical and trend

shocks. The estimates of the volatility are directly fed into the model. They are reported in

the first two columns in Table 2. The volatility of the cyclical shock is about 12 times larger

than the volatility of the trend shock in the pre-1998 sample. In the post-1998 sample, the

volatility of cyclical shock is about 10 times larger than that of the trend shock.

4.3.2 Evaluating the General Adequacy to Macroeconomics Moments

Panel A shows that the model fits standard deviations of detrended output growth,

inflation, and detrended wage rates moderately well. 7 For example, the standard deviation

of detrended output is about 1.62 percent in the pre-1998 sample whereas the model produces

2.21 percent. Panel B shows that the model could also moderately match the first-order

autocorrelations of detrended output and inflation.

7I use a Hodrick and Prescott (1997) filter with smoothing parameter 1600 to detrend output and wages.
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4.3.3 Evaluating the Adequacy to Key Financial Moments

Panel C shows the model approximately matches the key financial moment: stock-bond

return correlation. In the pre-1998 sample, the model produces a stock-bond correlation of

0.41 while the correlation the data is 0.37. In the post-1998 period, the model produces a

stock-bond correlation of -0.09 while it is -0.25 in the data. Another important feature of

data that the model is able to approximately fit is the correlation between changes in yields

and changes in the slope of the yield curve. 8 Because cyclical shocks are mean-reverting

and short-lived, they have larger effects on short-term interest rates relative to long-term

ones. On the contrary, trend shocks are long-lived and therefore have bigger effects on the

long-term interest rates. Therefore, the slope of the yield curve decreases in response to

a positive cyclical shock whereas it increases in response to a positive trend shock. The

correlation between changes in long-term interest rates and changes in the slope of the yield

curve is thus negative following cyclical shocks and positive with respect to trend shocks.

Figure 5 plots the 5-year moving correlation between changes of the 5-year zero coupon

bond yields and the slope of the yield curve. 9 The correlation is mostly negative in the

1970s and 1980s and becomes positive in the recent decades. This pattern is striking as it is

the opposite of the movement we see for stock-bond returns correlation. Nevertheless, this

pattern is not implied by the correlation between stock-bond returns. Therefore, it could

serve as an important validation for the key mechanism of the model. I evaluate the fit of the

model to the correlation between changes in 5-year yields and changes in yield curve slopes.

In the pre-1998 period, the model produces a correlation of -0.04, compared with -0.22 in

the data. In the post-1998 period, the model produces a correlation of 0.19, compared with

0.49 in the data. The model underpredicts the correlation in the post sample. A potential

reason is that the short-term interest rate in the U.S. has been stuck at the zero-bound in

recent years, whereas the model has no zero lower bound. Therefore, changes of slopes are

strongly positively correlated with changes of long-term yields.

8The slope of the yield curve in general is defined as the long-term interest rates minus the short-term
interest rates.

9The slope is measured by the 5-year yield less the three-month bill rate.
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4.4 Impulse Responses

Impulse response functions clarify the mechanisms by which individual shocks act on

stocks, bonds, and macroeconomic variables. This section presents the impulses of variables

to cyclical and trend productivity shocks.

Figure 6 shows responses of output, inflation, nominal interest rate, the yield for 10-

year nominal and real bonds and stock prices to a cyclical productivity shock. A cyclical

shock acts as a strongly positive impulse to output, but as a negative one to inflation. It

increases output, lowers the marginal production cost and therefore inflation. Long-term real

interests fall as people expect the economy to go back to the long-term trend. Both stock

and bond prices increase following a cyclical shock, so cyclical productivity shocks tend to

raise stock-bond correlation.

Figure 7 shows responses of output, inflation, nominal interest rate, the yield for 10-

year nominal and real bonds and stock prices to a a trend shock. A trend shock acts as a

strongly positive impulse to nominal and real short-term interest rates. Because it implies a

large wealth effect to consumers, households increase consumption. The output and inflation

therefore increases as well. Stock prices increase significantly following a trend shock, while

bond prices fall. Thus, trend shocks tend to decrease stock-bond return correlation.

5 Bayesian Estimation of the Model with Stochastic

Volatility

This section investigates and estimates the model with stochastic volatility. I use a

state-space representation that facilitates the estimation. Let zt denotes the vector of state

variables in deviation from the deterministic steady state (excluding volatility states σz,t,

σg,t, σv,t and σp,t) and σt = [σz,t, σg,t, σv,t, σp,t] as the vector of volatility states. The vector of

all state variables is defined as st ≡ [zt, σt]. Also, the observable series used to estimate the

model are denoted as xt, which could consists of productivity growth, bond yields, and stock

returns. Let εt = [εz,t, εg,t, εv,t, εp,t] denotes the vector of shocks , and εσ = [εσz, εσg, εσv, εσp]

represents shocks to the conditional volatilities. And v(.) is function that depends on the
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volatility of the shocks. The approximated solution of the model can be characterized by a

state-space representation in the following form

zt = Φ(κ)zt−1 + v(σt)εt (30)

xt = µx(κ) + T(κ)st−1 + ωt (31)

The parameter κ is the collection of parameters of the model. Equation (30) characterizes the

evolution of state variables as a vector autoregressive process with stochastic volatility. The

term v(σt) captures stochastic volatility in productivity growth, which drives the dynamics

of state variables. Economic observables xt are linked with state variables through the

measurement equation (31), where ωt is the measurement error. This approximated solution

attempts to simplify the representation of the model, while maintaining the key feature of

stochastic volatility. In the calibration section, I find that solving the model in higher order

terms doesn’t impact the movements of the model tremendously.

The model with stochastic volatility captured by (30) and (31) is a nonlinear state space

model whose log-likelihood function is not known in closed form. Thus, I use a particle filter

to approximate the likelihood of the model and subsequently embed the likelihood approx-

imation into a random-walk Metropolis–Hastings algorithm. The details of the estimation

are provided in the appendix.

5.1 Empirical Analysis

In this section, I estimate the stochastic volatility version of the model using three observ-

ables: productivity growth, stock returns, and bond returns. The data spans from 1960:Q1

to 2016:Q4. The bond return is the return on five-year bond from the CRSP US Treasury

Database, and the stock return is the return on S&P 500.

There are in total 16 parameters to be estimated. The persistence parameters include

ρz, ρg, ρi, and ρp. The persistence of volatility processes are captured by ρσz, ρσg, ρσv and

ρσp. Let σz, σg, σv, and σp denote the steady state log standard deviation of cyclical shocks,

trend shocks, monetary policy shocks and preference shocks, ησz, ησg, ησv, ησp denote the

standard deviation of shocks to volatility processes.
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To constrain the number of parameters used in estimation, I set other parameters the

same as those used in the calibration section. The average of the productivity growth rate µg

is set to be 0.8% such that the model’s long-term average of productivity growth (1−α)∗µg
matches the historical average of productivity growth.

I now proceed to the Bayesian estimation of the model. Table 3 summarizes posterior

distributions of estimated parameters and their priors in the estimation. The prior for these

parameters are relatively flat. For the persistence parameters ρz, ρg, ρv, ρp, ρσ,z, ρσ,g, ρσ,v,

and ρσ,p, I choose a uniform prior between -1 and 1. The prior distribution for the log

volatility of shocks is normally distributed with a mean of -5 and standard deviation of 2.

Standard deviations of shocks to the volatilities are set to be inverse gamma distributed with

mean 0.2 and standard deviation of 0.2.

The posterior medians of the persistent parameters ρz, ρg, ρi, and ρp are 0.87,0.98,

0.51, and 0.95 respectively. These persistence parameters at the quarterly frequency suggest

that the cyclical and trend components are very persistent. The monetary policy shock is

relatively short-lived, but the preference shock is persistent. And the confidence intervals for

persistence parameters are small. These values also give support to the choice of parameters

used in the calibration section. As for the persistence parameters for the volatility, the

posterior median of ρσ,z and ρσ,g, ρσ,v, ρσ,p are 0.87, 0.91, 0.96, 0.81 respectively. So the

volatilities of these shocks are persistent.

5.2 The Fit of Stock-Bond Return Correlation

Despite that the stock-bond return correlation is not a directed targeted moment in the

estimation, I evaluate the fit of the model in explaining the observed stock and bond return

correlation. The stock-bond return correlation changed from positive to negative around

1998. Figure 8 plots the smoothed volatility of the cyclical shocks, trend shocks, monetary

policy shocks, and preference shocks. We can see that there is a decline in the volatility of

cyclical shocks. And the volatility of trend shocks increases around year 1998. This result

is consistent with the split-sample calibration using productivity series alone, which lends

support to the notion that productivity risk is an important force in driving stock and bond
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returns 10. And the use of stock and bond returns data allows us the keep track of these

volatilities with small confidence intervals.

Figure 9 plots the model-implied stock-bond return correlation. We can see that the

model is successful in capturing a decline of the stock-bond return correlation. The pattern is

broadly consistent with the realized stock-bond return correlation in Figure 1. The estimated

model doesn’t fully match the level of the stock-bond correlation, though.

6 Conclusion

This paper has examined the importance of productivity shock in driving the dynamics of

stock and bond return through a New Keynesian model with two types of persistent shocks

to productivity growth. The model features two types of persistent shocks to productiv-

ity growth: mean-reverting “cyclical” shocks and permanent “trend” shocks. The relative

importance of these two shocks varies stochastically over time.

I develop a state-space representation of this nonlinear model with stochastic volatility

and estimate it using a particle Markov-Chain Monte-Carlo (MCMC) approach. Empirical

analysis finds that cyclical and trend shocks to productivity can be important source to

account for asset prices and macroeconomics quantities. The cyclical fluctuations of produc-

tivity growth lead to large positive comovement between stock and bond returns, while the

trend fluctuations give rise to large negative comovement between stock and bond returns.

The main mechanism identified by the model provides several additional testable impli-

cations, such as the covariance between short and long term interest rates. The cyclical

fluctuations are associated with more movement in short-term interest rates relative to that

in the long-term rates. The trend fluctuations are associated with more movements in long-

term interest rates. This pattern is broadly consistent with the data.

10The stochastic volatility model assumes that volatilities are stationary over time. Therefore, it may
underpredict the potential regime change in the magnitude of the volatilites.
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Tables and Figures

Table 1: Quarterly Calibration

Parameter Description Value
Panel A: Preferences

β Subjective discount factor 0.99
ψ Inverse of elasticity of intertemporal substitution 2
γ Risk aversion 10.0
ϕ Inverse of labor supply elasticity 0.3

Panel B: Technology

α Capital share 0.33
δ Depreciation rate of capital stock 0.02
θ Price adjustment frequencies 0.75

Panel C: Productivities

ρz Persistence of z 0.95
ρg Persistence of g 0.98

Panel D: Monetary Policy

ρi Degree of monetary policy inertia 0.5
φy Sensitivity of interest rate to output 0.1
φπ Sensitivity of interest rate of inflation 1.5

This table reports the parameter values used in the quarterly calibration of the model. The

table is divided into four categories: preferences, technology, firms price setting and policy

parameters.
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Table 2: Calibrated Model Moments

Sample Period 1960Q1-1998Q4 1999Q1- 2015Q4

Statistic Data Model Data Model

Volatility Parameters

σz 0.84 0.84 0.66 0.66
σg 0.031 0.031 0.068 0.068

Panel A: Standard deviations

σ(y) 1.62 2.21 1.20 2.09
σ(w) 1.11 3.85 1.56 3.87

Panel B: Autocorrelations

AC1(y) 0.98 0.91 0.94 0.87
AC1(π) 0.88 0.96 0.50 0.97

Panel C: Correlations

corr(∆Y$
5 −∆Y$

3m,∆Y$
5 ) -0.22 -0.04 0.49 0.19

corr(π,∆c) -0.32 -0.05 0.11 0.01

corr(rw, r
$
10) 0.37 0.41 -0.25 -0.09

This table presents the standard deviations, autocorrelations, and cross-correlations for key
economic variables from the data and from the model. The model is calibrated at a quarterly
frequency and the reported statistics are annualized.
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Table 3: Prior and posterior distributions of estimated parameters

Parameter Distribution Prior Posterior

5% 50% 95% 5%. 50% 95%
Cyclical Shock

ρz U -0.90 0 0.90 0.84 0.87 0.90
ρσz U -0.90 0 0.90 0.85 0.87 0.90
σz N -9 -5 -1 -4.81 -4.77 -4.75
ησz IG 0.06 0.15 0.49 0.09 0.10 0.11

Trend Shock

ρg U -0.90 0 0.90 0.95 0.98 0.99
ρσg U -0.90 0 0.90 0.90 0.91 0.92
σg N -9 -5 -1 -7.05 -6.95 -6.91
ησg IG 0.06 0.15 0.49 0.16 0.18 0.20

Monetary Policy Shock

ρi U -0.90 0 0.90 0.49 0.51 0.52
ρσv U -0.90 0 0.90 0.95 0.96 0.99
σv N -9 -5 -1 -5.76 -5.71 -5.66
ησv IG 0.06 0.15 0.49 0.03 0.03 0.05

Preference Shock

ρp U -0.90 0 0.90 0.98 0.99 0.99
ρσp U -0.90 0 0.90 0.77 0.81 0.85
σp N -9 -5 -1 -6.81 -6.75 -6.53
ησp IG 0.06 0.15 0.49 0.07 0.09 0.10

This table reports the prior and posterior distribution of parameters from the estimation of
the model. There are 16 parameters estimated. U , N , and IG denote normal, uniform and
inverse gamma distribution respectively.
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Figure 1: Realized Stock-Bond Correlation for U.S.
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Source: GSW(2007, 2010) and CRSP

This figure graphs realized quarterly correlations measured using daily returns for nominal
and real bonds in U.S. The data used for real bonds, which are known as the TIPs, starts
at 1998.
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Figure 2: Moving Stock-Bond Correlation for U.S.
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This figure displays correlations produced using monthly returns for nominal and real bonds
in U.S. The estimate for month t is the sample correlation of the 25 returns for months t−12
through t+ 12.
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Figure 3: Realized Stock-Bond Correlation for U.K.
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This figure graphs realized yearly correlations measured using daily returns for nominal
and real bonds in UK. The data sample is from January 1986 to December 2015.
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Figure 4: Moving Stock-Bond Correlation for U.K.
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This figure displays correlations produced using monthly returns for nominal and real bonds
in U.K. The estimate for month t is the sample correlation of the 25 returns for months
t− 12 through t+ 12.
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Figure 5: Correlation between Slope Changes and Yields Changes
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This figure graphs the 5-year moving quarterly correlations between changes in 5-year bond
yield and changes in yield curve slope . The slope is measured by the 5-year yield less the
three-month bill rate.
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Figure 6: Impulse Response Functions for Level Shocks
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This figure shows average simulated impulse responses to a one standard deviation level
technology shock for the output, inflation, the nominal interest rate, the nominal and real

10-year yields, and the stock prices.
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Figure 7: Impulse Response Functions for Trend Shocks
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This figure shows average simulated impulse responses to a one standard deviation level
technology shock for the output, inflation, the nominal interest rate, the nominal and real

10-year yields, and the stock prices.
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Figure 8: Smoothed Volatility Dynamics
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This figure plots the smoothed volatilities in percentage deviation from their means. The
dashed lines represent 95 percent confidence intervals.
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Figure 9: Model Predicted Stock-Bond Return Correlation
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This figure plots the model predicted stock-bond return correlation.
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Appendix A Data

A.1 U.S Stock-Bond Data

The stock data used for U.S is the return on S&P 500. The nominal bonds and real

bonds data is from Gürkaynak et al. (2007) and Gürkaynak et al. (2010).

A.2 U.K Stock-Bond Data

The stock data used for U.K is the return on FTSE 100 index. FTSE index began on 3

January 1984 at the base level of 1000. It is a share index of the 100 companies listed on

the London Stock Exchange with the highest market capitalization. The nominal and real

bonds data is from the Bank of England at :

http://www.bankofengland.co.uk/statistics/Pages/yieldcurve/archive.aspx .

Appendix B Model Derivations

B.1 Price of a Utility Claim and the SDF Under Epstein-Zin Pref-

erences

The stochastic discount factor (SDF) or the marginal rate of substitution of consumption

between neighboring dates is

Mt,t+1 ≡
∂Vt/∂Ct+1

∂Vt/∂Ct
(32)

By using the chain rule of derivatives, we have

∂Vt
∂Ct+1

=
∂Vt

∂(Et(V 1−γ
t+1 )

1
1−γ

∂(Et(V 1−γ
t+1 ))

1
1−γ

∂Vt+1

∂Vt+1

∂Ct+1

(33)
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Combining it with

∂Vt

∂Et(V 1−γ
t+1 )

1
1−γ

= βV ψ
t Et(V 1−γ

t+1 )
−ψ
1−γ (34)

,

∂Et(V 1−γ
t+1 )

1
1−γ

∂Vt+1

= V −γt+1Et(V
1−γ
t+1 )

γ
1−γ (35)

∂Vt+1

∂Ct+1

= (1− β)UC,t+1λt+1V
ψ
t+1;

∂Vt
∂Ct

= (1− β)UC,tλtV
ψ
t (36)

Then we have,

Mt+1 = β

(
Ct+1

Ct

)−ψ
λt+1

λt

[
Vt+1

(EtV 1−γ
t+1 )

1
1−γ

]ψ−γ
(37)

The total wealth is the discounted future value of aggregate consumption. The value of

the total wealth WU,t is the lifetime-utility value, converted to real consumption units by

dividing by the marginal lifetime-utility of a unit of consumption good. Formally,

WU,t = Et(V 1−γ
t+1 )

1
1−γ

(
∂Vt

∂Et(V 1−γ
t+1 )

1
1−γ

)(
∂Vt
∂Ct

)−1

(38)

= Et(V 1−γ
t+1 )

1
1−γ βEt(V 1−γ

t+1 )
−ψ
1−γ V ψ

t (1− β)−1V −ψt Cψ
t λ
−1
t (39)

= β(1− β)−1Et(V 1−γ
t+1 )

1−ψ
1−γCψ

t λ
−1
t (40)

Ct+1 +WU,t+1 = Vt+1

(
∂Vt+1

∂Ct+1

)−1

= (1− β)−1V 1−ψ
t+1 C

ψ
t+1λ

−1
t+1 (41)

The gross return to the total is then

RW,t+1 =
Ct+1 +WU,t+1

WU,FFkt

= β−1

(
Ct+1

Ct

)ψ(
Vt+1

Et(V 1−γ
t+1 )

1
1−γ

)1−ψ(
λt+1

λt

)−1

(42)
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Combining (37) and (42), we have

Mt,t+1 =

(
β

(
Ct+1

Ct

)−ψ
λt+1

λt

) 1−ψ
1−γ(

R−1
W,t+1

) γ−ψ
1−ψ

(43)

B.2 Labor Supply

It is also useful to note that household intratemporal optimality condition implies that

−Un,t
Uc,t

=
Wt

Pt
(44)

Given the utility function specified in the paper, it translate into

wt − pt =σct + ϕnt + (χ+ Γt)(1− σ) (45)

Equation (44) can be interpreted as a competitive labor supply schedule, determining the

quantity of labor supplied as a function of the real wage, given the marginal utility of con-

sumption.

B.3 Optimal Price Setting and Inflation Dynamics

The optimality condition associated with the firm optimizing the price in period t is

∞∑
k=0

θkEt
{
Mt,t+kYt+k|t(P

∗
t −Mψt+k|t)

}
= 0 (46)

where ψt+k|t ≡ Ψ
′

t+k(Yt+k|t) denotes the (nominal) marginal cost of firms resetting in period

t+k for a a firm which last reset its price in period t andM≡ ε
ε−1

. Letting Πt,t+k ≡ Pt+k/Pt,

it is useful to rewrite the equation above as

∞∑
k=0

θkEt
{
Mt,t+kYt+k|t

(
P ∗t
Pt−1

−MMCt+k|tΠt−1,t+k

)}
= 0 (47)
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where MCt+k|t ≡ ψt+k|t/Pt+k is the real marginal cost in period t+ k for a firm whose price

was last set in period t.

A first-order Taylor approximation of the optimal price setting condition (47) around the

zero inflation steady state yields, after some manipulation, (Detailed derivations can been

found at the Chapter 3 of Gaĺı (2009))

p∗t = µ+ (1− βθ)
∞∑
k=0

(βθ)kEt{mct+k|t + pt+k}

where mct+k|t ≡ logMCt+k|t is the (log) real marginal cost and µ = logM is the log of the

desired markup. In the steady state, we could also have the approximate relationship between

aggregate output, employment, and technology up to an order related to the dispersion of

prices across firms (See Gaĺı (2009)

nt =
1

1− α
[yt − zt − (1− α)Γt − αkt] (48)

Therefore, the (log) marginal cost per output for an individual firm that last resets its

price in period t is given by

mct+k|t =wt+k − pt+k −mpnt+k|t (49)

=wt+k − pt+k − (zt+k + αkt+k − αnt+k|t + (1− α)Γt+k + log(1− α))

where mpn stands for marginal product per labor. The economy’s average real marginal cost

in period t is

mct =wt − pt −mpnt (50)

=wt − pt − (zt + αkt − αnt + (1− α)Γt + log(1− α))
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Thus the following relation holds between firm-specific and economy-wide marginal costs:

mct+k|t =mct+k + α(nt+k|t − nt+k) (51)

=mct+k +
α

1− α
(yt+k|t − yt+k)

=mct+k −
αε

1− α
(p∗t − pt+k)

where the second equality follows from (48) and the third equality results from combining

demand schedule and the good market clearing condition.

Substituting (51) into (47) and rearranging terms yields

p∗t = (1− βθ)
∞∑
k=0

(βθ)kEt{pt+k −Θµ̂t+k} (52)

where µ̂t ≡ µt − µ is the deviation between the average and desired markups, with µt ≡
pt − logψt = −mct and Θ ≡ 1−α

1−α+αε
. The above expression for p∗t can be rewritten as a

recursive equation:

p∗t = βθEt{p∗t+1}+ (1− βθ)(pt −Θµ̂t) (53)

As shown by Gaĺı (2009), the above environment implies that the aggregate price dy-

namics are described by the equation

Π1−ε
t = θ + (1− θ)

(
P ∗t
Pt−1

)1−ε

(54)

where Πt ≡ Pt
Pt−1

is the gross rate of inflation between t− 1 and t and P ∗t is the price set in

period t by firms reoptimizing their price in that period. A log-linear approximation to the

aggregate price index around the steady state yields

πt = (1− θ)(p∗t − pt−1) (55)
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or, equivalently, after rearranging terms:

pt = θpt−1 + (1− θ)p∗t (56)

Finally, combining (55) and (53) yields the inflation equation

πt = βEtπt+1 − λµ̂t (57)

where

λ ≡ (1− θ)(1− βθ)
θ

Θ (58)

Appendix C Estimation

The section describes the details of estimating the model with stochastic volatility. The

state-space representation of the model is summarized in Equation (6), (30) and (31) as

zt = Φ(κ)zt−1 + v(σt)εt (59)

xt = µx(κ) + T(κ)st−1 + ωt (60)

where Σω is measurement error, σt follows autoregressive processes in Assumption 2.

C.1 Particle Filter

Let x1:T denotes the observables from period 1 till T . Because the likelihood function

of the model p(x1:T ) is not known in a closed form, The estimation method uses a particle

filter to approximate the likelihood. The implementation of the particle filter is based on the

Algorithm 13 in Herbst and Schorfheide (2015). The particle filter uses a swarm of particles

{sj,Wj}Tj=1to approximate the likelihood, where sjt are particle values and the W j
t are the

particle weights. The conditional expectation of h(st) is approximated by a weighted average

of the (transformed) particles h(sjt).

Algorithms 1:
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1. Initialization. Draw the initial particles from the distribution sj0 ∼ p(s0) , j = 1, ...,M.

2. Recursion. For t = 1, ..., T :

(a) Forecasting st: Draw ŝjt from density p(ŝjt |s
j
t−1). An approximation of E[h(st)|x1:t−1]

is given by

E[h(st)|x1:t−1] =
1

M

M∑
j=1

h(ŝjt) (61)

(b) Forecasting xt: The predictive density p(xt|x1:t−1) can be approximated by the

average of incremental weight p(xt|ŝjt)

p(xt|x1:t−1) =
1

M

M∑
j=1

p(xt|ŝjt) (62)

(c) Updating. Define the normalized weights

ŵjt =
p(xt|ŝjt)

1
M

∑M
j=1 p(xt|ŝ

j
t)

(63)

(d) Selection. Resample the particles via multinomial resampling. Let {sjt}Mj=1 de-

note M iid draws from a multinominal distribution characterized by support

points and weights {ŝjt , ŵ
j
t}. An approximation of E[h(st)|x1:t, κ] is given by

E[h(st)|x1:t] =
1

M

M∑
j=1

h(sjt)w
j
t (64)

3. Likelihood Approximation. The approximation of the log likelihood function is given

by

log p(x1:T |κ) =
T∑
t=1

log

(
1

M

M∑
j=1

p(xt|sjt)

)
(65)
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In this version of the particle filter, the time t particles are generated based on the time t−1

particles by simulating the state-transition equation forward. The particle filter weights are

then updated based on the likelihood of the observation xt under the sjt particle, p(xt|sjt).
The more accurate the prediction of xt based on sjt , the larger the density p(xt|sjt), the larger

the density p(xt|sjt), and the larger the relative weight that will be placed on particle j.

The selection step is included in the filter to avoid a degeneracy of particle weights. While

it adds additional noise to the Monte Carlo approximation, it simultaneously equalizes the

particle weights, which increases the accuracy of subsequent approximations. In the absence

of the selection step, the distribution of particle weights would become more uneven from

iteration to iteration. The selection step does not have to be executed in every iteration.

For instance, in practice, users often apply a threshold rule according to which the selection

step is executed whenever the following measure falls below a threshold, e.g., 25% or 50% of

the nominal number of particles:

ˆESSt = M/

(
1

M

M∑
j=1

(ŵjt )
2

)

The effective sample size ˆESSt (in terms of number of particles) captures the variance

of the particle weights. It is equal to M if W̃ j
t = 1 for all j = 1 and equal to 1 if one of the

particles has weight M and all others have weight 0.

C.2 Smoother

After the filter is performed on the entire data set, I have an approximate representation

of p(st|x1:t) for each time step t = 1, ...T , consisting of weighted particles
{
sjt , w

j
t

}
, j =

1, ...M , where M is the number of particles used for approximation. I employ the backward-

smoothing routine suggested by Godsill et al. (2004) to draw from the smoothing density

p(s1:T |x1:T ;κ) to get a historical distribution of the latent/hidden states. I build on the

factorization

p(s1:T |x1:T ) = p(sT |x1:T )
T−1∏
t=1

p(st|st+1:T , x1:T ) (66)

45



where, using the Markovian assumptions of the model

p(st|st+1:T , x1:T ) = p(st|st+1, x1:t) (67)

=
p(st|x1:t)p(st+1|st)

p(xt+1|x1:t)
(68)

∝ p(st|x1:t)p(st+1|st) (69)

Since the forward filtering generates an approximation to p(st|x1:t), we immediately obtain

the modified particle approximation

p(st|st+1, x1:T ) ≈
M∑
i=1

wjt|t+1δsjt
(sj) (70)

with modified weights

wjt|t+1 =
wjtp(st+1|sjt)∑M
j=1w

j
tp(st+1|sjt)

(71)

where δ is the Dirac delta function and wjt is a weight attached to particle sjt . The revised par-

ticle filter can now be used to generate states successively in the reverse-time direction, con-

ditioning on future states. Specifically, given a random sample {sjt+1}, j = 1, ...,M drawn ap-

proximately from p(st+1:T |y1:T ), take one step back in time and sample sit from p(st|st+1, x1:T ).

The pair {(sjt+1, s
i
t)} is then approximately a random realization of p(st:T |x1:T ). Repeating

this process sequentially over time produces the following general “smoother” algorithm:

Algorithms 2:

1. Initialization: Draw M particles
{
sjT
}

from p(sT |x1:T ;κ)

2. For t = T − 1 to 1:

* Calculate wjt|t+1 ∝ wjt p(x
j
t+1|xit) for each i = 1, ...M .

* Resample: choose {st} , i = 1, ....M with probability wit|t+1.

3. s1:T = {(s1, s2, ..., sT )} is an approximate realization from p(s1:T |x1:T )
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As the number of particles goes to infinity, the simulated conditional distribution of states

converges to the unknown true conditional density.

C.3 Random Walk Metropolis Hasting Algorithm

To gain posterior sampler of the parameters of the model, the particle filter is embed-

ded into a standard random-walk Metropolis-Hasting algorithm described by Herbst and

Schorfheide (2015) (Chapter 9). The algorithm proceeds as

Algorithms 3:

1. For i = 1 : N . Draw the parameter vector ν from the density q(ν|κi−1)

2. Set κi = ν with probability α(ν|κi−1) = p(x|ν)p(ν)
p(x|κi−1)p(κi−1)

and κi = κi−1 otherwise. The

likelihood function p(x|κ) is approximated by the particle filter.

Iterating over steps 1 to 2, we can - after a suitable burn-in-period - obtain samples form

the desired posterior distribution, which is the invariant distribution of the resulting Markov

Chain. In our case, a burn-in of 2500 proved sufficient.

C.4 Empirical Estimation Using Only Productivity Series

Historically, U.S labor productivity growth (defined as output per hour worked) in the

business sector has varied greatly. Strong growth rate of 3.3% in the period of 1947-1973 was

followed by a sharp slowdown to 1.6% in the two decades that followed. The information

and communication technology (ICT) boom in period 1996− 2003 led to the “productivity

miracle”, when labor productivity growth doubled. As the gains from the ICT boom had

largely been reaped, productivity growth slowed down to 1.9% in the pre-crisis years (2004-

2007). Labor productivity growth has been moderate since the crisis.

In this section, I estimate the dynamics of productivity allowing for stochastic volatility

as specified in the model section of Assumption 2 using only the productivity growth series.

The average of the growth rate µg is set to be 0.8% such that the model’s long-term average

of productivity growth (1 − α) ∗ µg matches the historical average of productivity growth.

There are in total 8 parameters to be estimated for the cyclical and trend component. Prior
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distributions for these parameters are the same as in Section 5.1. The prior distributions are

summarized in the following table.

After the estimation, I find that the the median persistent parameters ρz and ρg for the

level of the cyclical and trend component is 0.64 and 0.77. These persistence parameters at

the quarterly frequency suggest that the cyclical and trend components are moderately per-

sistent. However, we should treat these point estimates with caution because corresponding

confidence intervals are not very small. The 5% and 95% percentiles are 0.52 and 0.88 for

the cyclical component, and 0.65 and 0.91 for the trend component. Given the length for the

quarterly productivity series that are available from 1961, pinning down these parameters

with small confidence intervals is an economically challenging task. Therefore, it is necessary

to use financial data to increase the precision of these estimates. These numbers echo the

estimates of the persistence parameter for the long-run component of quarterly consump-

tion growth by Schorfheide et al. (2018). They find that the posterior median estimates of

persistence parameters are about 0.65 estimated using. quarterly consumption growth.

As for the persistence parameters for the volatility, the posterior median of ρσ,z and ρσ,g

are 0.91 and 0.75. The 5% and 95% percentiles is 0.83 and 0.96 for ρσ,z, while the percentiles

are 0.58 and 0.97 for the ρσ,g. Therefore, volatility of the trend component is harder to

pinning down relative to the one in the cyclical component.

The posterior median for the log of the cyclical and trend volatility σz, σg is -5.0 and -5.9

respectively, suggesting the trend shock volatility is smaller than the cyclical shock volatility.
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Table 4: Prior and posterior distributions of volatility process parameters estimated using
only productivity

Parameter Distribution Prior Posterior

5% 50% 95% 5%. 50% 95%
Cyclical Shock

ρz U -0.90 0 0.90 0.52 0.64 0.88
ρσz U -0.90 0 0.90 0.83 0.91 0.96
σz N -8 -4 0 -5.24 -5.02 -4.76
ησz IG 0.06 0.15 0.49 0.10 0.16 0.19

Trend Shock

ρg U -0.90 0 0.90 0.65 0.77 0.91
ρσg U -0.90 0 0.90 0.58 0.75 0.91
σg N -9 -5 -1 -6.51 -5.91 -5.57
ησg IG 0.06 0.15 0.49 0.06 0.12 0.20

This table reports the prior and posterior distribution of parameters from the estimation of
the model. The table summarizes distributions of volatility parameters of cyclical component
and distributions of the trend component. There are eight parameters estimated. ρz and
ρg denote the persistence of the cyclical and trend component of productivity. ρσz and
ρσg denote the persistence of the volatility process. σz and σg denote the steady state log
standard deviation of the cyclical shock and trend shock. ησz and ησg denote the standard
deviation of shocks to the volatility process. U , N , and IG denote normal, uniform and
inverse gamma distribution respectively.
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C.5 Impulse Responses of Monetary Policy and Preference Shocks

This section presents the impulses of variables to monetary policy and preference shocks.

Figure 10 shows responses of output, inflation, nominal interest rate, the yield for 10-year

nominal and real bonds and stock prices to a monetary shock. A positive monetary policy

shock is contractionary and acts as a negative impulse to output and inflation. Long-term

real interest rates increase as people expect the economy to go back to long-run level. So

monetary policy shocks lead to positive stock-bond correlations.

Figure 11 shows responses of output, inflation, nominal interest rate, the yield for 10-year

nominal and real bonds and stock prices to a preference shock. A positive preference shock

makes agents more patient and acts a negative impulse to output and inflation and interest

rates falls. Stock and bond prices increase after a positive preference shock.
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Figure 10: Impulse Response Functions for A Monetary Policy Shock
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This figure shows average simulated impulse responses to a one standard deviation
monetary policy shock for the output, inflation, the nominal interest rate, the nominal and

real 10-year yields, and the stock prices.
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Figure 11: Impulse Response Functions for A Preference Shock
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This figure shows average simulated impulse responses to a one standard deviation
preference shock for the output, inflation, the nominal interest rate, the nominal and real

10-year yields, and the stock prices.
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