
The Short-Run and Long-Run Components of

Idiosyncratic Volatility and Stock Returns

Yunting Liu∗

October 20, 2020

∗Yunting Liu: Department of Finance, School of Economics, Peking University, Beijing, China, 100871; Email:

yuntingliu@pku.edu.cn. I’m grateful to the associate editor and two anonymous referees for insightful and con-

structive comments, which greatly improved the exposition of the paper. The author also thanks comments from

Federico Bandi, Gregory Duffee, Jon Faust, and seminar participants at the CCER Summer Institute. Yixuan Di

provides excellent research assistance. Yunting Liu acknowledges financial support from the National Natural Science

Foundation of China (Grant 71903004) and the Seed Fund (School of Economics, Peking University).

1



The Short-Run and Long-Run Components of Idiosyncratic

Volatility and Stock Returns

Abstract

To capture the dynamics of idiosyncratic volatility of stock returns over different horizons

and investigate the relationship between idiosyncratic volatility and expected stock returns,

this paper develops and estimates a parsimonious model of idiosyncratic volatility consisting

of a short-run and a long-run component. The conditional short-run and long-run components

are found to be positively and negatively related to expected stock returns, respectively. The

positive relation between the short-run component and stock returns may be caused by investors

requiring compensation for bearing idiosyncratic volatility risk when facing trading frictions and

hold under-diversified portfolios. The negative relationship between the long-run component

and stock returns may reflect the fact that stocks with high long-run idiosyncratic volatility are

less exposed to systematic risk factors, and hence earn lower returns. Moreover, the low risk

exposure of stocks characterized by high idiosyncratic volatility lends support to real-option-

based mechanisms to explain this negative relation. In particular, the systematic risk of a firm

with abundant growth options crucially dependent upon the risk exposure of these options. The

value of growth options could rise significantly due to convexity when the increase in idiosyncratic

volatility occurs over long horizons. And growth options’ systematic risk could fall because the

relative magnitude of their value in relation to systematic risk factors decreases.

Keywords: idiosyncratic volatility, short-run (long-run), cross-sectional stock returns, risk fac-

tors, real options

JEL Code: G10, G12, G13, G17, G31
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1 Introduction

The question of whether a stock’s expected return depends on idiosyncratic volatility has been

a central theme of the asset pricing literature. In an influential paper, Ang et al. (2006) present

evidence that stocks with high realized idiosyncratic volatility have anomalously low returns in the

subsequent month. This phenomenon is challenging to interpret because traditional asset pricing

theories predict no relation between idiosyncratic volatility and expected returns when investors

are well-diversified and markets are complete and frictionless, or a positive relation when investors

don’t hold well diversified portfolios and face trading frictions (for example, Merton 1987).

Ang et al. (2006) define idiosyncratic volatility as the standard deviation of the residuals from

the Fama and French (1993) (hereafter FF-3) model estimated using daily returns from the pre-

vious month. Because idiosyncratic volatility is time-varying, lagged idiosyncratic volatility may

not be a good proxy for the conditional idiosyncratic volatility. However, the dynamics of condi-

tional idiosyncratic volatility and its relationship with cross-sectional stock returns remain unclear.

Fu (2009) constructs measures of conditional idiosyncratic volatility using exponential generalized

autoregressive processes (EGARCH) and instead finds a strong positive relationship between con-

ditional idiosyncratic volatility and average returns. Nonetheless, Guo et al. (2014) caution that

the EGARCH approach used by Fu (2009) may be subject to substantial look-ahead bias. Once

the look-ahead bias is addressed, Fink et al. (2012) also do not find a positive relationship between

idiosyncratic volatility and expected returns using the EGARCH model. Finally, Ang et al. (2009)

demonstrate that lagged realized idiosyncratic volatility possesses strong explanatory power for 1-

month-ahead realized idiosyncratic volatility, indicating that lagged realized volatility may serve as

a useful proxy for the conditional idiosyncratic volatility. However, they do not provide a structural

model for the dynamics of idiosyncratic volatility.

This paper mainly makes three contributions to the literature. First, I document empirical

evidence that idiosyncratic volatility decays quickly between one and three months, while persist-

ing over longer horizons. To capture the dynamics of idiosyncratic volatility over short and long

horizons, I develop a parsimonious model of idiosyncratic volatility featuring two components dif-
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fering in persistence. This modeling approach is in line with the work of Adrian and Rosenberg

(2008), Corsi (2009), and Christoffersen et al. (2008). The more persistent component is termed

the long-run component and could be modeled as containing a unit root. The other component

is referred to as the short-run component and is less persistent. I use both portfolio analysis and

Fama and MacBeth (1973) regressions to investigate the cross-sectional relationship between these

two components and stock returns. Results from both types of methods indicates a significant neg-

ative relation between the conditional long-run idiosyncratic volatility and expected returns, and a

significant positive relation between the conditional short-run idiosyncratic volatility and expected

returns. Therefore, accounting for the dynamics of idiosyncratic volatility over short and long hori-

zons is crucial to the measurement of conditional idiosyncratic volatility and understanding of the

relationship between idiosyncratic volatility and expected stock returns.

Moreover, the return spread between the lowest and highest quintile portfolio sorted by the

conditional long-run idiosyncratic volatility is correlated with the return spread sorted by the

realized idiosyncratic volatility, with a coefficient of 0.95. And the averages of these return spreads

are also quantitatively close, with −0.79% per month for the realized volatility and −0.73% for the

conditional long-run idiosyncratic volatility. This finding suggests that the negative relationship

between realized idiosyncratic volatility and stock returns is limited to the long-run idiosyncratic

volatility and provides a new dimension for investigating potential mechanisms behind this negative

relationship.

Second, this paper provides empirical evidence suggesting that the cross-sectional relationship

between conditional long-run idiosyncratic volatility and stock returns may be risk-driven, while the

relationship between conditional short-run idiosyncratic volatility and stock returns is not. I include

three different predictive horizons (1, 12, and 24 months) in the portfolio analysis, and find that the

predictive relationship between conditional long-run idiosyncratic volatility and expected returns

holds for the 1-, 12- and 24-month horizons. In contrast, the predictive relationship of conditional

short-run idiosyncratic volatility only holds for the 1-month horizon. This finding highlights that

there are persistent variations in expected returns that are negatively related to conditional long-

run idiosyncratic volatility. As Cochrane (1999) explains, if predictability reflects risk, it is likely to
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persist. Therefore, a risk-based explanation may be an effective means of explaining the persistent

negative relationship between the conditional long-run volatility and expected returns, whereas the

positive relationship between the conditional short-run idiosyncratic volatility and expected stock

returns may not be driven by exposure to systematic risk factors.

Furthermore, I investigate whether the difference in portfolio returns sorted by the short-run

and long-run components of idiosyncratic volatility might be explained by exposure to systematic

risk factors. The return difference in portfolios sorted by the conditional short-run idiosyncratic

volatility is not found to be correlated with common systematic risk factors. This lack of cor-

relations with systematic risk factors is direct evidence against risk-based explanations for the

predictability of short-run idiosyncratic volatility. The positive relationship between conditional

short-run idiosyncratic volatility and stock returns may arise because investors require compensa-

tion for bearing idiosyncratic risk when facing trading frictions in short horizons, and hence hold

under-diversified portfolios (Merton (1987)). In contrast, the difference in portfolio returns sorted

by the conditional long-run idiosyncratic volatility comoves with systematic risk factors. In par-

ticular, I find that portfolios with high idiosyncratic volatility are less exposed to the profitability

factor in the five-factor model of Fama and French (2015).

Third, the finding that the negative relation between realized idiosyncratic volatility and stock

returns is limited to the long-run idiosyncratic volatility lends support to real-option-based mech-

anisms as means of explaining the low risk exposure to systematic risk factors of stocks with high

long-run idiosyncratic volatility. Real-option-based theories, following Berk et al. (1999) and Carl-

son et al. (2004), model the value of firms deriving from assets in place and growth options. Firms

could exploit valuable investment opportunities by making irreversible investments. Bhamra and

Shim (2017) introduce stochastic idiosyncratic cash flow risk into a real-option model with growth

options to explain the negative relationship between idiosyncratic volatility and stock returns. For

a firm with abundant growth options, its systematic risk crucially depends upon the risk exposure

of such options. When idiosyncratic volatility increases, the value of growth options could rise

significantly because of convexity. But growth options’ exposure to systematic risk factors could

fall, due to the decrease in the relative magnitude of the value of options related to systematic risk.
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I also outline a model similar to that of Bhamra and Shim (2017) in the Appendix to illustrate this

mechanism.

In addition, this real-option-based mechanism highlights the importance of long-run idiosyn-

cratic volatility in explaining the negative relationship between idiosyncratic volatility and stock

returns. The rise in growth option values could be pronounced when the increase in idiosyncratic

volatility is over long horizons and there is a possibility of waiting to invest. The impact of short-

run variations of volatility on option values could be limited. Therefore, only the persistent part of

idiosyncratic volatility, i.e., long-run idiosyncratic volatility, is negatively related to cross-sectional

stock returns.

The remainder of this paper is organized as follows. Section 2 describes how to measure the

idiosyncratic volatilities of stocks and decompose them into short-run and long-run components.

Section 3 explores the cross-sectional relationship between conditional short-run and long-run id-

iosyncratic volatility and stock returns using portfolio analysis. Section 4 examines such relation-

ships via cross-sectional regressions. Section 5 investigates risk exposures of stocks with different

levels of idiosyncratic volatility and discusses underlying mechanisms behind the cross-sectional

relationship between idiosyncratic volatility and stock returns. In particular, the discussion sheds

light on the implications of long-run idiosyncratic volatility for mechanisms behind the negative

relationship between idiosyncratic volatility and stock returns. Section 6 concludes.

2 Estimating Idiosyncratic Volatilities

In this section, I describe the data and methods used to estimate idiosyncratic volatilities.

2.1 Data

My dataset includes monthly and daily return data on stocks traded in the NYSE, AMEX, and

NASDAQ return files from the Center for Research in Security Prices (CRSP). The accounting

variables are from COMPUSTAT’s annual industrial files of income-statement and balance-sheet

data.
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The CRSP returns cover NYSE and AMEX stocks until 1973 when NASDAQ returns also come

on line. The COMPUSTAT data covers the period from 1963 to 2017. The 1963 start date reflects

the fact that the book value of common equity (COMPUSTAT item 60) is not generally available

prior to 1962. More importantly, COMPUSTAT data from earlier years have a serious selection

bias: the pre-1962 data are tilted toward big, historically successful firms.

The procedures below are standard in the literature following Fama and French (1992). To

ensure that the accounting variables are known before the returns they are used to explain, I match

the accounting data for all fiscal year ends in calendar year t− 1 with the returns for July of year

t to June of year t+ 1. The 6-month (minimum) gap between fiscal year end and the return tests

is conservative. I use a firm’s market equity at the end of December of year t − 1 to compute its

book-to-market ratio for year t− 1.

2.2 Idiosyncratic Volatility Definition

Following Ang et al. (2006) and Bali and Cakici (2008), I concentrate on idiosyncratic volatility

defined and measured relative to the Fama and French (1993) three-factor (FF-3) model.1 Specifi-

cally, I consider the following specification for each firm at each month:

rit,d = αit + βiMKTMKTt,d + βiSMBSMBt,d + βiHMLHMLt,d + σitε
i
t,d (1)

where for day d in month t, rit,d is stock i’s excess return, MKTt,d is the market excess returns,

SMBt,d and HMLt,d capture size and book-to-market effects, respectively. The residuals ηit,d ≡

σit,dε
i
t,d are the idiosyncratic risk for month t. I define the idiosyncratic volatility of stock returns

for firm i in month t as

vit = σit
√
Nm (2)

1I also consider defining the idiosyncratic volatility relative to the Carhart (1997) four-factor model and Fama
and French (2015) five-factor model. The negative relationship between lagged realized volatility and average stock
returns also holds. These results are available upon request.
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where Nm is the number of trading days in month t for firm i. It is useful to note that the

idiosyncratic volatility vit is the daily standard deviation of residuals times the square root of the

number of trading days in that month. The inclusion of Nm transforms the daily return residuals

into monthly residuals. This procedure can be can be seen in French et al. (1987) and Fu (2009).

Since the latent conditional volatility vit cannot be directly observed, I use realized volatility:

squared daily return residuals in month t obtained through the cross-sectional regression of equation

(1) to measure the individual stock’s idiosyncratic volatility for month t. Specifically,

IV i
t ≡

√√√√Nm∑
d=1

(ηit,d)
2 (3)

When I refer to idiosyncratic volatility in this paper, I mean idiosyncratic volatility relative to the

FF-3 model.

2.3 Time Series Properties of Realized Idiosyncratic Volatility

Table 1 presents the time-series properties of the realized idiosyncratic volatility (IV). I first

compute the time-series statistics of idiosyncratic volatility for each firm and then summarize the

mean statistics across about 22,000 firms. The mean of idiosyncratic volatility is 15.54% across

stocks, and the mean standard deviation for IV is 9.21%. The skewness is 2.00, and kurtosis

is 8.23, which suggests that the idiosyncratic volatility is positively skewed and fat-tailed. The

autocorrelation for realized idiosyncratic volatility is 0.39 with 1-month lag, 0.31 with 2-month lag,

0.21 with 5-month lag, 0.12 with 10-month lag, and 0.12 with one-year lag. The autocorrelation

of 0.39 with 1-month lag and 0.31 with 2-month lag suggests that shocks to idiosyncratic volatility

are not very persistent within short horizons (a quarter). However, the autocorrelations decay

slowly over longer periods, for example, over a year. The autocorrelation of realized idiosyncratic

volatility with a lag period of 12 months is still more than 0.1. In comparison, the autocorrelation

of an AR(1) process with first-order autocorrelation of 0.39 would predict that the autocorrelation

with 12-month lag is less than 0.2 basis points 2.

2One basis point equals one hundredth of one percentage point.
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[Insert Table 1 about here]

This pattern of a relatively quick initial decline in the autocorrelation function followed by a

slower decay is sufficient evidence to dismiss using the simple ARMA model to model idiosyncratic

volatility (for example, Barndorff-Nielsen and Shephard 2002). Corsi (2009) proposes that the

aggregate stock return volatility could be captured by an additive cascade model of volatility defined

over different time periods. The empirical evidence in this section suggests that the idiosyncratic

volatility of stock returns could also be better captured by a process with components of different

persistence. Therefore, I model the log of idiosyncratic volatility as the sum of a short-run and

a long-run component. The short-run component is less persistent and has a large impact on the

autocorrelations of idiosyncratic volatility over short horizons (a quarter). And the more persistent

long-run component dominates the autocorrelations over longer horizons (a year or longer).

2.4 Decomposing Idiosyncratic Volatility

To decompose idiosyncratic volatilities into short-run and long-run components, I model the

idiosyncratic volatility vit as follows:

Idiosyncratic Volatility : log vit = sit + lit (4)

Short-Run Component :sit+1 = ρiss
i
t + σisε

i
s,t

Long-Run Component :lit+1 = φi + ρill
i
t + σilε

i
l,t
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I refer to this model as the short- and long-run (SL) model hereafter. In equation (4), the log-

volatility is the sum of two components, st and lt. Each component follows a first order autore-

gressive process AR(1) with its own rate of mean reversion. The short-run component st has a

mean of zero, while the long-run component lt contains a constant φi
3. I normalize the mean

reversion parameters such that ρl > ρs. This restriction identifies the model, as otherwise, the two

components can be interchangable. Moreover, parameters σs and σl denote the volatility of shocks

to the short-run and long-run components. Shocks to the short- and long-run components εs,t and

εl,t are normal independently and identically distributed with zero expectation and unit variance.

For each firm, equation (4) is readily in a state space form, and the unobserved short-run and

long-run components can be directly estimated via a Kalman filter. I consider ŝt ≡ Et−1(st|y1, y2, ...yt−1)

and l̂t ≡ Et−1(lt|y1, y2, ...yt−1) as the expectation for the short-run and long-run components at time

t based on information available at time t− 1. The smoothed estimates s̃t = E(st|y1, y2, ...yT ) and

l̃t = E(lt|y1, y2, ...yT ), which use all the sample information, may produce more precise estimates

for the expectation of unobserved components st and lt at each point in time. Therefore, full

information set estimates are appropriate for asset pricing tests because of the gain in accuracy.

However, in terms of evaluating trading strategies, incorporating future observations directly in

forecasts may lead to using substantial information beyond what investors are aware of 4 . Thus, I

report results using filtered estimates in the subsequent empirical analysis. Empirical results using

smoothed estimates are statistically more significant but are nevertheless included in the Appendix.

Starting with Engle and Lee (1999), a number of studies find that two-component volatility

models outperform one-component specifications in explaining equity market volatility. Adrian

and Rosenberg (2008) consider a two components model for aggregate stock market volatility

and find that the prices of risk are different for the short-run and long-run component. In addi-

tion, two-component volatility models perform well in the option pricing literature. For example,

3The constant term should be excluded from the short-run component mainly for two reasons. First, a constant
term is capturing a very “persistent” part of idiosyncratic volatility. If a firm has a high constant φi, it tends to have
high idiosyncratic volatility for long periods of time. This implication also plays an important role in interpreting the
negative relationship between long-run idiosyncratic volatility and stock returns through real-option-based channels
in Section 5.3. Second, the constant term in the long-run component makes the SL model to some extent comparable
to the limiting case when the long-run component contains a unit root and does not have a mean.

4Filtered estimates may still use future information if parameters are estimated based on whole sample information.
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Christoffersen et al. (2008) show that modeling stock return volatility with short- and long-run

components perform well for option pricing. My paper differs from Adrian and Rosenberg (2008)

both in the estimation method and the focus on idiosyncratic volatility. Adrian and Rosenberg

(2008) estimate volatilities using a maximum-likelihood method on daily stock returns and then

aggregate volatilities to monthly frequencies. I use a state-space model on realized idiosyncratic

volatility to decompose realized idiosyncratic volatility into short-run and long-run components.

And this method is convenient to extract filtered and smoothed estimates of conditional idiosyn-

cratic volatility.

2.5 A Permanent and Transitory Special Case

In my empirical work, I also investigate a special case of equation (4) where the long-run

component contains a unit root and the short-run component follows a white noise. I refer to this

model as the permanent and transitory (PT) model.

Idiosyncratic Volatility : log vit = sit + lit (5)

Short-run Component :sit+1 = σisε
i
s,t

Long-run component :lit+1 = lit + σilε
i
l,t

Equation (5) may be viewed as a special case of (4) with the restriction that ρs = 0 and ρl = 1.

The log-volatility is the sum of two components, st and lt. The long-run component lt follows

a random walk. Thus changes to the long-run volatility could be permanent and are persistent

over time. For each firm, equation (5) can also be estimated using a Kalman filter. Since the

long-run component lt follows a random walk, the one-step-ahead conditional expectation of the

long-run component Et(lt+1|y1, y2, ..., yt) = Et(lt|y1, y2, ..., yt) and that of the short-run component

Et−1(st|y1, y2, ..., yt−1) trivially equals zero. Therefore, for the permanent and transitory (PT)

model, I only consider the expectation of the long-run component l̂t = Et−1(lt|y1, y2, ..., yt−1) and

l̃t = E(lt|y1, y2, ..., yT ) and investigate their relationship with expected returns.
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2.6 Parameter Estimates of the Idiosyncratic Volatility Model

In practice, the true conditional idiosyncratic volatility vt cannot be directly observed. Conse-

quently, the realized volatility IVt is a proxy for the latent volatility subject to measurement errors.

Because measurement errors are largely identically and independent distributed over time, it has

little forecasting power for forming conditional expectations. In empirical studies, realized volatili-

ties are usually treated as measuring latent volatilities without errors. (for example, Bollerslev and

Zhou 2002; Chua et al. 2010). In this paper, I report results using this approach because it mas-

sively simplifies subsequent estimation and analysis. The results with identically and independently

distributed measurement errors are quantitatively close and are reported in the Appendix.

Table 2 summarizes parameter estimates for the short- and long-run volatility (SL) model with

equation (4) and the permanent transitory volatility (PT) model with equation (5). Both the SL

and the PT model are estimated using the maximum likelihood method. For the SL model, the

mean AR(1) parameter for the short-run component is -0.07, while the median is -0.003. The

long-run component is more persistent, with a mean AR(1) coefficient of 0.79 and a median of

0.94. The mean volatility of shocks to the short-run component is 0.29 and the median is 0.31.

For the long-run component, the mean volatility is 0.20 and the median is 0.15. Therefore, the

short-run component doesn’t persist long, but shocks to it are relatively bigger. It mostly fluctuates

around the mean, zero. Despite that shocks to the long-run component tend to be smaller, the

long-run component is relatively persistent, which means that the level of the long-run component

can display substantial variations over time. In the Appendix, I also plot estimates of the short-run

and long-run components of idiosyncratic volatility for a few randomly selected firms.

The permanent and transitory (PT) model can be viewed as a special case of the SL model

with ρs = 0 and ρl = 1. Given that the median estimate of ρs is -0.003 and ρl is 0.94 from the SL

model, the PT model can be a plausible model to capture the dynamics of idiosyncratic volatility.

For the PT model, the only parameters to be estimated are the volatility of shocks to the short-run

and long-run components. The mean volatility of shocks to the short-run component is 0.36, and

the median is 0.34. As for the volatility of shocks to the long-run component, the mean is 0.14,

and the median is 0.10. The magnitude of shocks is also largely similar to estimates from the SL
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[Insert Table 2 about here]

model.

3 Portfolio Sorts of Idiosyncratic Volatility and Cross-Sectional

Stock Returns

This section considers the performance of portfolios formed by different measures of idiosyncratic

volatilities and asks whether exposures to different volatilities are systematically important for

expected stock returns. To examine trading strategies based on idiosyncratic volatility, I consider

the standard portfolio formation strategies following Jegadeesh and Titman (1993) with a holding

period of N = 1, 12, 24 months. For strategies with multi-month holding periods, I average across

the N subqunintiles formed at the beginning of month t− s, for s = 0, 1, 2, 3, ...N −1, as the return

for a given quintile.

3.1 Patterns in Average Returns for Idiosyncratic Volatility

I first consider value-weighted quintile portfolios formed every month by sorting stocks based on

realized idiosyncratic volatility relative to the FF-3 model. Portfolios are formed every month based

on realized volatility computed using daily data of the previous month. Panel A in Table 3 shows

that the average return increases slightly from 0.96% per month to 1.05% going from the quintile 1

(low idiosyncratic volatility stocks) to quintile 3. Then portfolios’ returns drop tremendously going
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to quintile 5. The portfolio with the highest idiosyncratic volatility (quintile 5) has a surprisingly

low average return of 0.17% per month. The difference in returns between the highest and lowest

portfolios is as large as −0.79% per month, which is statistically significant, with a robust t-statistic

of −2.84. These numbers are similar to the findings of Ang et al. (2006), who find a return spread

of −0.97% between quintile 5 and quintile 1 portfolios, with a significance of −2.97, in a July

1963–December 2000 sample.

The FF3-alpha for the quintile 5 portfolio is −1.21% per month, with a robust t-statistics of

−7.15. Therefore, the difference in quintile portfolio returns can not be explained by our standard

FF-3 model. The difference in average returns in Table 3 indicates a significant negative relationship

between expected return and idiosyncratic volatility. Panel B in Table 3 also reports average

portfolio returns with holding periods of N = 12, 24 months. For the holding period of N =

12 months, the average return decreases from 0.91% per month for the quintile 1 portfolio (low

idiosyncratic volatility stocks) to 0.58% for the quintile 5 portfolio (high idiosyncratic volatility

stocks). The difference in returns is −0.33%, with a robust t-statistics of −2.89. Similarly, when

the holding period is N = 24 months, the average return of the quintile 1 portfolio is 0.89% per

month, while it is 0.72% for the quintile 5 portfolio. The difference in returns is −0.17%, with a

robust t-statistic of −2.12. Therefore, the negative relation between lagged idiosyncratic volatility

and stocks returns holds for longer holding periods, suggesting that the cross-sectional relationship

is persistent and expected returns have a persistent component.

[Insert Table 3 about here]
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3.2 Portfolios Sorted by Short-Run and Long-Run Volatilities

Estimating the state-space model of (4) and (5) produces estimates of the conditional short-run

and long-run volatilities at the monthly frequency. I form value-weighted quintile portfolios sorting

by the filtered short-run volatility ŝt and long-run volatility l̂t.

First, I consider the performance of portfolios sorted by the filtered estimates of the conditional

long-run component with a holding period of one month. Table 4 reveals substantial spreads in

average returns across quintile portfolios. For both the SL model and the PT model, the portfolio

with the highest long-run volatilities earns particularly low average returns. The average return

of the quintile 5 portfolio with the highest long-run idiosyncratic volatility is as low as 0.18% per

month for the SL model and 0.25% for the PT model. The spread in average returns between the

portfolios with the lowest and highest long-run volatility is −0.73% per month for the SL model

and −0.68% for the PT model. The difference in returns also can not be explained by the FF-3

model. The highest long-run volatility portfolio has FF3-alpha of −1.25% for the SL model and

−1.19% for the PT model. The alphas are statistically significant, with robust t-statistics of −6.06

and −5.72, respectively. Therefore, there is a strong negative relation between conditional long-run

volatility and stock returns.

Next, Panels A and B in Table 6 report the portfolio performance of sorting on long-run idiosyn-

cratic volatility for holding periods of N = 12, 24 on the filtered estimates of long-run idiosyncratic

volatility. Statistical significance actually increases for longer holding periods. For the SL model,

return spreads are −0.73%, −0.38%, and −0.22%, respectively, for N = 1, 12, 24. The correspond-

ing t-statistics are −2.10, −2.67 and −2.22. Higher statistical significance suggests that conditional

long-run idiosyncratic volatility play a crucial role behind the persistent negative relationship be-

tween idiosyncratic volatility and stock returns.

Last, Table 5 and Panel C in Table 6 report the performance of portfolios sorted by the filtered

estimates of conditional short-run idiosyncratic volatility. The high minus low short-run volatility

portfolio earns an average monthly return of 0.19%, with a t-statistic of 2.81, which indicates that

there is a significant positive relation between conditional short-run idiosyncratic volatility and ex-

pected stock returns.. Extending the strategy for multiple holding periods of N = 12 and N = 24
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reveals that this positive relationship is not persistent over time. Panel C in Table 6 reports that

the average spread is 0.03 and the significance is 1.40 over 12-month holding periods. Moreover, the

average spread over the 24-month holding period even becomes negative, namely −0.02, with a sig-

nificance of −0.99. These results suggest that stock prices go up when the conditional idiosyncratic

volatility increases. However, as the short-run volatility dies off, stock prices revert back over time.

Given the low average persistence parameter ρs estimated, the speed of reversion in stock prices

may be slow to some extent. Holding periods of 12 and 24 months seem to be relatively long. This

suggests that there may be some degree of frictions (limited investor attention or trading frictions,

for example) in slowing the reversion of stock prices.

[Insert Tables 4, 5, and 6 about here]

4 Cross-Sectional Regressions

My empirical analysis thus far is based on portfolio sorts. In this section, I investigate the

cross-sectional relationship between average stock returns and estimated conditional idiosyncratic

volatilities. I follow Fama and MacBeth (1973) by regressing cross-sectional stock returns on

idiosyncratic volatilities and other firm characteristics on a monthly basis and calculate the time-

series averages of the coefficients. My goal is to test whether the coefficient on idiosyncratic volatility

in explaining cross-sectional stock returns is significantly different from zero.
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Specifically, I run the following cross-sectional regressions each month for the SL and PT model:

Rei,t+1 = γl,t l̂t + γs,tŝt + εi,t+1 (6)

Rei,t+1 = γl,t l̃t + γs,ts̃t + εi,t+1 (7)

where ret+1,i is stock i’s excess return in month t + 1 minus its Fama and French (1993) factor

adjustments. Volatilities with tildes are smoothed estimates, and those with hat signs are filtered

estimates.

Table 7 shows time-series averages of the coefficients from the month-by-month Fama–MacBeth

(FM) regressions of the cross-section of stock returns on different measures of idiosyncratic volatility.

The average coefficient on variables used to explain expected returns provides standard FM tests for

determining which variables on average have explanatory power during the July 1963 to December

2017 period 5.

The average coefficient on the log of realized idiosyncratic volatility (IV) is −0.52, with a t-

statistic of −5.66. The finding confirms the negative relationship between idiosyncratic volatility

and expected return found by Ang et al. (2006).

[Insert Table 7 about here]

Subsequently, I include measures of conditional short-run and long-run idiosyncratic volatility

into FM regressions. Regressions using the SL model are reported in Table 7. The regression results

5All results with smoothed estimates are reported in the appendix.
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indicate that there exists a negative (positive) relationship between conditional long-run (short-run)

volatility and expected returns. The average coefficient is −0.50 (2.41), with a significant t-statistic

of −4.01 (6.10) for the filter long-run (short-run) component. The statistical significance is also

higher for the smoothed estimates. These FM regression results lend support to the finding in

Section 3.2 with stocks sorted by ŝt and l̂t. It is also useful to explain the finding using the PT

model to measure conditional long-run idiosyncratic volatility. Table 8 shows that the average

coefficient on the filtered estimates of conditional long-run volatility l̂t is −0.49, with a t-statistic

of −4.11.

4.1 Additional Robustness Check

As robustness checks, I include two additional controls in the Fama–MacBeth regressions —

return reversals and unexpected idiosyncratic volatility — in this section. The findings in the

previous section remain robust when controlling for these two channels.

4.1.1 Controlling for Return Reversals

Stock returns display short-term reversals (Jegadeesh 1990; Lehmann 1990). Return reversal

describes the phenomenon that if a stock’s previous-month return is too high (low), it will tend to

reverse the following month and earn a low (high) return. Following Huang et al. (2010), I use the

returns of individual stocks in the prior month to control for return reversals. Therefore, equation

(7) is modified to allow for the previous month’s stock return:

rit,d = γl,t l̂t + γs,tŝt + βr,t−1r
i
t−1 + vitε

i
t,d (8)

Without the previous month’s stock return rit−1, the relationship between idiosyncratic risk and

expected stock returns may be negatively biased because the coefficient incorporates part of the

return reversal that should have been captured by the stock return of the previous month. Including

return reversals in the FM regression, Table 7 shows that the coefficient on the log of realized

volatility is reduced to −0.42 with a t-statistic of −4.55. This finding is consistent with the finding
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in Huang et al.’s (2010) that part of the finding by Ang et al. (2006) can be explained by return

reversals. And the coefficient on the lagged month return is statistically significant, with a statistic

of −10.59.

However, accounting for return reversals doesn’t quite reduce the coefficients of the conditional

short-run and long-run components. Some of the coefficients become even more significant after the

lagged month return control is added. Still, the coefficient on lagged month return is significant for

both the SL and the PT model, with t-statistics of −11.36 and −12.23. Therefore, return reversals

are not the key driver of the relationship between short-run and long-run conditional idiosyncratic

volatility and expected returns.

4.1.2 Controlling for Unexpected Idiosyncratic Volatility

In the spirit of the argument of French et al. (1987), the relationship between expected idiosyn-

cratic volatility and expected returns in the above regression may be clouded by the relationship

between unexpected idiosyncratic volatility and unexpected stock returns. To control for this effect,

I add unexpected idiosyncratic volatility to the FM regression. I define the unexpected idiosyncratic

volatility as

µt = log vt − ŝt − l̂t

where log vt is the log of realized volatility at time t, and ŝt and l̂t are filtered volatility estimates

made at time t − 1 for the short-run and long-run components at time t. The average of first-

order autocorrelations of µt is 0.003, suggesting µt has no time-series predictability. The average

of correlations between st and µt is 0.07, and it is −0.06 between st and lt. These statistics justify

µt as being unexpected. When the unexpected idiosyncratic volatility is added to the regression,

cross-sectional relationships between conditional short-run and long-run idiosyncratic volatility and

expected stock returns remain robust.

Table 7 reports results for the SL model. The coefficient on the filtered short-run (long-run) id-

iosyncratic volatility is 3.52 (−0.34) with a robust t-statistic of 8.92 (−2.66), which further supports

that there is a strong negative (positive) relationship between the conditional long-run (short-run)

component and average stock returns. The coefficient on the unexpected idiosyncratic volatility
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is also significant. For the filtered idiosyncratic volatility estimates group, the coefficient of un-

expected idiosyncratic volatility is 4.81, with a high t-statistic of 22.61. The positive relationship

between unexpected idiosyncratic volatility and stock returns is consistent with the positive con-

temporaneous relationship between stock returns and firm-level idiosyncratic volatility found by

Duffee (1995) and Grullon et al. (2012) 6. Table 8 reports similar results of adding unexpected

idiosyncratic volatility to the PT model.

5 The Cross-Sectional Relationships Between Short-Run and Long-

Run Idiosyncratic Volatility and Expected Stock Returns

In this section, I examine the risk exposures of portfolios sorted by short-run and long-run

idiosyncratic volatility. Then I attempt to interpret these results through possible channels through

which idiosyncratic volatility is related to stock returns.

5.1 Investigating Risk Exposures

To investigate whether the cross-sectional relationship between short- or long-run idiosyncratic

volatility and stock returns can be explained by risk exposures, I examine return differences between

portfolios sorted by short-run and long-run idiosyncratic volatility. If these return differences are

driven by risk, they should comove with systematic risk factors. If no significant correlations are

found, the relation could then be non-risk-based and driven by forces such as market frictions.

To this end, I compute the correlations between the returns of the high minus low (5-1) portfolio

sorted by conditional short-run idiosyncratic volatility, long-run idiosyncratic volatility, and lagged

realized volatility, and the five factors of Fama and French (2015) (FF-5). Based on the evidence

of Novy-Marx (2013) and Titman et al. (2004), profitability factor RMW and investment factor

6The convexity-based real-option explanation in Section 5.3 may be useful to explain the positive sign on un-
expected idiosyncratic volatility. The average of correlations between the conditional long-run volatility at t + 1:
l̂t+1 and unexpected idiosyncratic volatility µt is about 0.4. This suggests that a positive unexpected change in µt

is associated with an upward revision in the conditional long-run volatility l̂t+1. When the long-run idiosyncratic
volatility l̂t+1 is expected to increase, the stock price at t may rise as growth options become more valuable. The
expected return at t+ 1 falls as the exposure of growth options to systematic risk factors decreases, though.
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CMA are added in addition to the three factors of Fama and French (1993) 7. As for the short-run

and long-run components, I use the filtered estimates here, which use information at time t− 1 to

predict the conditional volatility at time t.

Table 9 reports the correlations between portfolio spreads sorted by idiosyncratic volatility and

the five factors. It is found that the return spread sorted by the conditional short-run component,

denoted by IVFS, is not correlated with the spread sorted by the conditional long-run idiosyncratic

volatility IVFL, realized idiosyncratic volatility IVFR, or the five factors of Fama and French (2015).

The correlation is −0.04 with the IVFL portfolio, 0.02 with the excess market return, 0.06 with

the size factor SMB, 0.04 with the value factor HML, 0.04 with the RMW factor, and 0.04 with

the CMA factor. The lack of correlations with systematic risk factors further suggests that the

cross-sectional relationship between the conditional short-run component and stock returns is not

likely driven by risk.

In the meantime, the return spread sorted by the conditional long-run component, denoted

as IVFL, is strongly correlated with the return spread sorted by realized idiosyncratic volatility,

denoted as IVFR, with a correlation of 0.95. Therefore, the cross-sectional relationship between

realized idiosyncratic volatility and stock returns found by Ang et al. (2006) is mostly captured by

the long-run idiosyncratic volatility. Besides, the return spread IVFL correlates with the book-to-

market factor HML, profitability factor RMW, and investment factor CMA with a negative sign.

The correlation with the profitability factor is especially strong, with a coefficient of -0.62. Given

that these factors may earn positive risk premiums, low exposure to them could help explain why

stocks with high conditional long-run idiosyncratic volatility earn low returns.

Table 10 systematically examines how these five factors are useful to explain the portfolio returns

sorted by the realized idiosyncratic volatility beyond the FF-3 model. The test assets used here are

the 25 portfolios formed monthly on size and realized idiosyncratic volatility (Size-IV), provided

on Kenneth French’s website 8. Similar to the findings of Fama and French (2016), the FF-5 model

7The question investigated here is not related to momentum. Including the momentum factor of Carhart (1997)
doesn’t impact the main results of this paper and the results are available upon request.

8According to information on Kenneth French’s website,, the portfolios, which are constructed monthly, are the
intersections of five portfolios formed on size (market equity, ME) and five portfolios formed on the variance of the
residuals from the FF-3 model.
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[Insert Table 9 about here]

provides a better description of average returns on these 25 portfolios. Table 12 reports Gibbons

et al.’s (1989) GRS statistic, which is reduced from 6.76 for the three-factor model to 5.56 for the

five-factor model. The average absolute alpha is also reduced significantly from 0.24 to 0.13. In

particular, Table 10 shows that stocks with high idiosyncratic volatility have significant negative

exposure to the profitability factor RMW.

While the profitability factor is useful to explain the negative relationship between idiosyncratic

volatility and the cross-section of stock returns, it does not fully capture it. Strong exposure to

RMW still misses part of the low average returns of high realized idiosyncratic volatility small

stocks. Therefore, I investigate whether there is an additional factor structure behind the negative

relationship between idiosyncratic volatility and the cross-section of stock returns. In particular, I

investigate whether IVFL is a useful factor in explaining the cross-sectional relationship between

idiosyncratic volatility and stock returns. This is testing whether there is a “slope” structure

between portfolios sorted by idiosyncratic volatility.

Tables 11 and 12 report the results of adding the IVFL factor to the FF-5 model. As Table

12 shows, adding the IVFL factor does not lead to substantial gains beyond the FF-5 model. The

GRS statistic is reduced from 5.55 to 5.15, and the average absolute alpha decreases from 0.13

to 0.11. However, Table 11 also shows that after the IVFL factor is added, coefficients on the

RMW factor become almost insignificant. This pattern suggests that the information of RMW

is largely captured by the IVFL factor. Therefore, it may be worthwhile for future research to
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investigate additional risk factor structures behind the negative relationship between conditional

long-run idiosyncratic volatility and stock returns.

The empirical analysis in this section complements the paper by Guo and Savickas (2010).

Guo and Savickas (2010) demonstrate that the difference in returns between low and high realized

idiosyncratic volatility stocks is a priced factor in the cross-section of stock returns. And this

factor is correlated with the value factor HML defined by Fama and French (1993). However,

they haven’t examined risk exposures to the FF-5 model. This paper examines whether return

differences between low and high conditional short-run and long-run volatility are priced factors

and whether they are related to the five factors of Fama and French (2015).

5.2 Why is Short-Run Idiosyncratic Volatility Related to Stock Returns?

Traditional asset pricing theories assuming full information, frictionless and complete markets

predict no relationship between idiosyncratic volatility and expected returns when agents are ra-

tional. In reality, investors may not hold perfectly diversified portfolios. Various theories assuming

under-diversification predict that idiosyncratic risk is positively related to expected stock returns,

such as, informational frictions (Merton, 1987) and transaction costs (Hirshleifer, 1988). However,

frictions that prevent investors from adjusting portfolios to perfectly diversify risk are more signif-

icant in short horizons. Moreover, the difficulty of achieving perfect diversification is more evident

in short horizons when shocks to idiosyncratic volatility have a relatively large and short-lived

component. In the SL model, the median estimates of the volatility of shocks to the short-run

component θs is more than 50% larger than that of the long-run component θl.

For returns measured over long horizons, frictions such as transaction costs and limited attention

tend to play restricted roles, which is consistent with that reported in Section 3.2. The return spread

sorted by the conditional short-run idiosyncratic volatility is found not to hold for long holding

periods of 12 and 24 months. Therefore, the positive relationship between conditional short-run

idiosyncratic volatility and cross-sectional stock returns might arise because investors face frictions

and hold under-diversified portfolios.
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5.3 Why is Long-Run Idiosyncratic Volatility Related to Stock Returns?

Ang et al. (2006) find that stocks with high realized idiosyncratic volatility in one month

earn extremely low average returns in the next month. One reason for this novel finding is that

earlier studies do not sort stocks or examine idiosyncratic volatility at the stock level. In Section

5.1, I present empirical evidence that the return spreads between the lowest and highest quintile

portfolio sorted by the conditional long-run idiosyncratic volatility and lagged realized idiosyncratic

volatility are strongly correlated with a coefficient of 0.95. Additionally, Section 3.2 shows that the

magnitude of the return spreads is also quantitatively close, with −0.79% for the realized volatility

and −0.73% for the conditional long-run idiosyncratic volatility. This finding suggests that long-run

idiosyncratic volatility plays a crucial role in the negative relationship between realized idiosyncratic

volatility and stock returns.

Furthermore, as shown in Section 3.2 and 5.1, the cross-sectional relationship between long-run

idiosyncratic volatility and stock returns persists over multi-period holding returns. And stocks

with high long-run idiosyncratic volatility may be less exposed to systematic factors, especially the

profitability factor RMW. All this empirical evidence lends support to risk-based explanations of the

negative relationship between idiosyncratic volatility and cross-sectional stock returns. Moreover,

risk-based mechanisms should explain why such relationship is limited to the long-run component.

There are several risk-based explanations for the negative relationship between idiosyncratic

volatility and stock returns in the literature. For this type of explanation, idiosyncratic volatility

can serve as a proxy for either exposure to systematic risk factors or sensitivity to fluctuations in

changing investment opportunities as in Merton (1973).

Babenko et al. (2016) view firms as portfolios of separate systematic and idiosyncratic divisions

and rely on the additivity of systematic and idiosyncratic cash flow shocks in the valuation of firms.

Hence, favorable idiosyncratic shocks decreases the importance of systematic cash flows, leading to

lower risk premia and higher idiosyncratic stock return volatility. Similarly, Chen et al. (ance) study

a risk-shifting problem of equity householders who take on more investments with high idiosyncratic

risk when firms are in distress and when the aggregate economy is in a bad state. Thus, the negative

covariance between the equity beta and market risk premium in the conditional CAPM may explain
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the negative excess returns and negative CAPM alphas in the high-idiosyncratic-volatility firms.

Recent studies such as Cao et al. (2008) and Grullon et al. (2012), find that firms with high

idiosyncratic volatility usually possess abundant growth options. Real options models, following

Berk et al. (1999) and Carlson et al. (2004), establish links between expected returns and the

riskiness of assets in place and growth options. The firm’s systematic risk could crucially depend

upon the risk exposure of its growth options, when such options’ value consist of a large proportion

of the firm’s value. Bhamra and Shim (2017) introduce stochastic cash flow risks into an equity

evaluation model with growth options to explain the negative relationship between idiosyncratic

volatility and expected stock returns. This real-option-based mechanism highlights the importance

of long-run idiosyncratic volatility in explaining the negative relationship between idiosyncratic

volatility and stock returns. When idiosyncratic volatility increases, the value of growth options

could rise due to convexity. Moreover, such a rise in the value of growth options could be significant

if the increase in idiosyncratic volatility is occurs over long horizons and there is a possibility of

delaying investment. Short-run variations in idiosyncratic volatility that level off quickly over time

may have a very limited impact on option values.

In the meantime, growth options’ sensitivity to systematic risk factors could decrease because

the relative magnitude of such options’ value that is related to systematic risk falls. This chan-

nel drives down the expected return when idiosyncratic volatility is higher. Therefore, long-run

idiosyncratic volatility serves as a proxy for exposure to systematic risk factors. A simple model

similar to that of Bhamra and Shim (2017) is also provided in the Appendix to shed light on the

real-option-based channel to explain the negative relationship between idiosyncratic volatility and

stock returns.

Guo and Savickas (2008, 2010), motivated by the reasoning that idiosyncratic volatility could

be related to growth options and investment opportunities, show that CAPM, FF-3 model, and

other asset pricing models may suffer from omitted variable bias because they do not include a

measure of the set of investment opportunities proposed in Merton’s (1973) ICAPM. As a result,

their pricing relationships assign too high a price of risk to the changes in aggregate investment

opportunities, which imparts a negative expected return on idiosyncratic volatility. Along with this
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argument, if long-run idiosyncratic volatility is a good proxy for changing investment opportunities,

this mechanism may also explain the negative relationship between long-run idiosyncratic volatility

and cross-sectional stock returns.

As for the non-risk-based explanations, the list of them could include lottery preferences (Bali

et al., 2011), limits to arbitrage (Stambaugh et al., 2015), and so forth. In a recent paper, Stam-

baugh et al. (2015) argue that costly arbitrage leads to the pricing of idiosyncratic risk, but the

cost is higher for overpriced stocks than for underpriced ones. Due to the fact that the negative

relation among overpriced stocks is stronger, especially for stocks less easily shorted, the overall

relation between idiosyncratic volatility and stock returns is negative. Since mispricing tends to

be corrected over the long-run, it is unclear whether this explanation could generate a persistent

negative relation between idiosyncratic volatility and stock returns. It is thus worth investigating

whether their findings hold over longer return horizons. Furthermore, non-risk-based explanations

may be challenged to reconcile the finding in this paper that the relationship between idiosyncratic

volatility and cross-sectional stock return is limited to the long-run component.

Therefore, there are two real-option-related mechanisms that may explain the negative relation

between long-run idiosyncratic volatility and stock returns. One possible avenue for future research

is to rigorously test these real-option-based and other mechanisms in explaining the negative rela-

tionship between long-run idiosyncratic volatility and cross-sectional stock returns.

6 Conclusion

The paper develops and estimates a model that better captures the dynamics of idiosyncratic

volatility. I decompose the volatility of idiosyncratic stock returns into short-run and long-run

components and find that there is a significant negative (positive) relationship between conditional

long-run (short-run) idiosyncratic volatility and expected stock returns. And the negative relation-

ship between lagged realized volatility and expected returns is captured by the long-run component.

These results highlight that idiosyncratic variations over short and long horizons have important

implications for cross-sectional stock returns.

Further empirical tests suggest the positive relationship between short-run idiosyncratic volatil-
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ity and stock returns is not risk-driven, while the negative relationship between long-run idiosyn-

cratic volatility and stock returns may be driven by risk. Moreover, the finding that the negative

relationship between realized idiosyncratic volatility and stock returns is limited to the long-term

component suggests two types of real-option-based mechanisms to explain the negative relationship

between long-run idiosyncratic volatility and stock returns.

One explanation is that stocks with high long-run idiosyncratic volatility are less exposed to

systematic risk factors. The systematic risk of a firm is determined by the risk of its assets in

place and growth options. When idiosyncratic volatility increases, growth options rise in value

because of convexity. And the exposure of growth options to systematic risk factors could fall due

to the decrease in the relative magnitude of option values related to systematic risk factors. The

other explanation is related to Merton’s (1973) ICAPM. Long-run idiosyncratic volatility might be

proxying for sensitivity to fluctuations in changing investment opportunities.
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Tables and Figures

Table 1: Time Series Properties of Idiosyncratic Volatility

Panel A: Some Summary Statistics of Idiosyncratic Volatility

Mean Std.Dev. Skewness Kurtosis

15.54 9.21 2.00 8.23

Panel B: Autocorrelations of Idiosyncratic Volatility

ACF(1) ACF(2) ACF(3) ACF(4) ACF(5) ACF(10) ACF(12)

0.39 0.31 0.28 0.23 0.21 0.12 0.12

This table summarizes the time-series statistics for idiosyncratic volatility. I first compute the statistics for
each stock and then average the statistics across all stocks. The sample period is July 1963 to December
2017. The ACF stands for estimated autocorrelations at different lags. The unit of the mean and standard
deviation is percentage points.

Table 2: Parameter Estimates for Idiosyncratic Volatility Model

Panel A: The Short- and Long-Run Volatility (SL) Model

Variables ρs ρl σs σl

Mean -0.07 0.79 0.29 0.20

Median -0.003 0.94 0.31 0.15

Panel B: The Permanent and Transitory Volatility Model

Variables σs σl

Mean 0.36 0.14

Median 0.34 0.10

This table summarizes the properties of parameter estimates for the short- and long-run idiosyncratic volatil-
ity processes. I first compute parameter estimates for each stock and then construct the mean and median
statistics across all stocks. The sample period is July 1963 to December 2017.

31



Table 3: Portfolios Sorted by Idiosyncratic Volatility

Panel A: Ranking on Realized Idiosyncratic Volatility

Rank Mean Std. Dev. % Mkt Share FF-3 alpha

1 (low) 0.96 3.65 43.8% 0.11

[3.14]

2 0.96 4.59 31.3% 0.00

[0.08]

3 1.05 5.69 15.3% -0.01

[-0.17]

4 0.76 7.03 7.1% -0.37

[-3.82]

5 (high) 0.17 8.38 2.5% -1.10

[-7.40]

5− 1 -0.79 6.66 -1.21

[-2.84] [-7.15]

Panel B: Ranking on Realized Idiosyncratic Volatility with Multiple Holding Periods

Period 1 Low 2 3 4 5 High 5− 1

N = 1 0.96 0.96 1.05 0.76 0.17 -0.79

[-2.84]

N = 12 0.91 0.95 0.97 0.89 0.58 -0.33

[-2.89]

N = 24 0.89 0.94 0.97 0.94 0.72 -0.17

[-2.12]

I form value-weighted quintile portfolios every month by sorting stocks based on idiosyncratic volatility
relative to the FF-3 model. Portfolios are formed every month, based on volatility computed using daily
data of the previous month. Portfolio 1 (5) is the portfolio of stocks with the lowest (highest) volatilities.
The statistics in the columns labeled Mean and Std. Dev. are measured in monthly percentage terms and
apply to total, not excess, returns. The column 5 − 1 refers to the difference in monthly returns between
portfolio 5 and portfolio 1. The alpha column reports Jensen’s alpha with respect to the FF-3 model. Robust
Newey and West (1987) t-statistics with up to one lag are reported in square brackets. The sample period
is July 1963 to December 2017.
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Table 4: Portfolios Sorted by the Filtered Estimates of Conditional Long-Run Volatility

Panel A: Short and Long-Run Volatility (SL) Model

Rank Mean Std. Dev. % Mkt Share FF-3 alpha

1 (low) 0.92 3.68 47.2% 0.09

[2.50]

2 1.00 4.77 32.0% 0.00

[0.06]

3 1.05 6.21 13.7% -0.01

[-0.1]

4 0.86 7.98 5.6% -0.31

[-2.73]

5 (high) 0.18 9.88 1.5% -1.15

[-6.26]

5− 1 -0.73 8.26 -1.25

[-2.10] [-6.06]

Panel B: Permanent and Transitory Volatility (PT) Model

Rank Mean Std. Dev. % Mkt Share FF-3 alpha

1 (low) 0.93 3.67 46.8% 0.10

[2.90]

2 1.00 4.75 32.0% -0.00

[-0.09]

3 1.05 6.14 13.9% -0.01

[-0.17]

4 0.84 7.91 5.7% -0.33

[-2.88]

5 (high) 0.25 9.84 1.6% -1.09

[-5.79]

5− 1 -0.68 8.23 -1.19

[-1.94] [-5.72]

Portfolios are formed every month based on the filtered estimates of conditional short-run idiosyncratic
volatility l̂t. Portfolio 1 (5) is the portfolio of stocks with the lowest (highest) volatilities. The statistics in
the columns labeled Mean and Std. Dev. are measured in monthly percentage terms and apply to total,
not excess, returns. The column 5 − 1 refers to the difference in monthly returns between portfolio 5 and
portfolio 1. The alpha column reports Jensen’s alpha with respect to the FF-3 model. Robust Newey and
West (1987) t-statistics with up to one lag are reported in square brackets. The sample period is July 1963
to December 2017.
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Table 5: Portfolios Sorted by Filtered Estimates of Expected Short-Run Volatility

Rank Mean Std. Dev. % Mkt Share FF-3 alpha

1 (low) 0.77 4.63 12.3% -0.16

[-2.84]

2 0.89 4.44 23.4% -0.02

[-0.44]

3 0.98 4.42 28.2% 0.07

[2.31]

4 0.91 4.45 23.4% 0.01

[0.39]

5 (high) 0.96 4.66 12.7% 0.01

[0.25]

5− 1 0.19 1.74 0.17

[2.81] [2.40]

Portfolios are formed every month based on the filtered conditional short-run idiosyncratic volatility ŝt.
Portfolio 1 (5) is the portfolio of stocks with the lowest (highest) volatilities. The statistics in the columns
labeled Mean and Std. Dev. are measured in monthly percentage terms and apply to total, not excess,
returns. The column 5 − 1 refers to the difference in monthly returns between portfolio 5 and portfolio 1.
The alpha column reports Jensen’s alpha with respect to the FF-3 model. Robust Newey and West (1987)
t-statistics with up to one lag are reported in square brackets. The sample period is July 1963 to December
2017.
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Table 6: Portfolios Sorted by Idiosyncratic Volatility with Multiple Holding Periods

Panel A: Ranking on Conditional Long-Run Idiosyncratic Volatility: PT

Period 1 Low 2 3 4 5 High 5− 1

N = 1 0.93 1.00 1.05 0.84 0.25 -0.68

[-1.94]

N = 12 0.89 0.99 1.01 0.94 0.55 -0.34

[-2.46]

N = 24 0.87 0.98 1.03 0.99 0.69 -0.19

[-1.96]

Panel B: Ranking on Conditional Long-Run Idiosyncratic Volatility: SL

Period 1 Low 2 3 4 5 High 5− 1

N = 1 0.92 1.00 1.05 0.86 0.18 -0.73

[-2.10]

N = 12 0.89 0.99 1.02 0.94 0.51 -0.38

[-2.67]

N = 24 0.87 0.98 1.03 0.99 0.66 -0.22

[-2.22]

Panel C: Ranking on Conditional Short-Run Idiosyncratic Volatility: SL

Period 1 Low 2 3 4 5 High 5− 1

N = 1 0.77 0.89 0.98 0.91 0.96 0.19

[2.81]

N = 12 0.87 0.90 0.94 0.89 0.90 0.03

[1.40]

N = 24 0.90 0.89 0.93 0.89 0.88 -0.02

[-0.99]

Panel A reports the performance of portfolios sorted by conditional long-run idiosyncratic volatility for the Permanent
and Transitory (PT) model. Panel B and Panel C report the performance of portfolio sorted by the conditional
short-run and long-run idiosyncratic volatility for the short- and long-run (SL) model. I form value-weighted quintile
portfolios every month by sorting stocks based on idiosyncratic volatility relative to the FF-3 model. The holding
period is 1 month, 12 months or 24 months. Portfolio 1 (5) is the portfolio of stocks with the lowest (highest)
volatilities. The statistics in the columns labeled Mean and Std. Dev. are measured in monthly percentage terms
and apply to total, not excess returns. The column 5−1 refers to the difference in monthly returns between portfolio
5 and portfolio 1. The alpha column reports Jensen’s alpha with respect to the FF-3 model. Robust Newey and West
(1987) t-statistics with up to one lag are reported in square brackets. The sample period is July 1963 to December
2017.
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Table 7: Relationship between Idiosyncratic Volatility and Expected Returns: SL Model

Short and Long-Run Volatility (SL) Model

log vt ŝt l̂t Ret(−1) µt

-0.52

[-5.66]

2.41 -0.50

[6.10] [-4.01]

-0.42 -4.82

[-4.46] [-10.67]

2.70 -0.48 -5.16

[6.81] [-3.74] [-11.43]

3.52 -0.34 -4.34 4.81

[8.93] [-2.66] [-10.19] [22.61]

The average coefficient is the time-series average of monthly regression coefficients from July 1963 to De-
cember 2017, and the t-statistic is the average coefficient divided by its time-series standard error. The
t-statistic is reported in brackets.

Table 8: Relationship between Idiosyncratic Volatility and Expected Returns: PT Model

Permanent and Transitory Volatility (PT) Model

log vt l̂t Ret(−1) µt

-0.52

[-5.73]

-0.49

[-4.11]

-0.42 -4.79

[-4.55] [-10.59]

-0.48 -5.07

[-3.88] [-11.21]

-0.26 4.88

[-2.12] [23.34]

-0.26 -4.19 4.75

[-2.08] [-9.72] [22.90]

The average coefficient is the time-series average of monthly regression coefficients from July 1963 to De-
cember 2017, and the t-statistic is the average coefficient divided by its time-series standard error. The
t-statistic is reported in brackets.
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Table 9: Correlations of Return Spreads with the Five Factors of Fama and French (2015)

IVFS IVFL IVFR RM −RF SMB HML RMW CMA

IVFS 1.00 -0.04 -0.00 0.02 0.06 0.04 0.04 0.04
IVFL -0.04 1.00 0.95 0.52 0.68 -0.33 -0.62 -0.37
IVFR -0.00 0.95 1.00 0.50 0.66 -0.31 -0.58 -0.36
RM −RF 0.02 0.52 0.50 1.00 0.28 -0.26 -0.23 -0.38
SMB 0.06 0.68 0.66 0.28 1.00 -0.07 -0.35 -0.10
HML 0.04 -0.33 -0.31 -0.26 -0.07 1.00 0.06 0.70
RMW 0.04 -0.62 -0.58 -0.23 -0.35 0.06 1.00 -0.04
CMA 0.04 -0.37 -0.36 -0.38 -0.10 0.70 -0.04 1.00

The table reports pairwise correlations between return spreads of the high minus low portfolio and the five factors of
Fama and French (2015). The variable IVFS denotes the return spread of sorting stocks by the conditional short-run
idiosyncratic volatility, IVFL denotes the return spread sorted by the conditional long-run idiosyncratic volatility, and
IVFR, the return spread sorted by lagged realized idiosyncratic volatility. RM−RF is the excess market return, SMB
is the size factor, HML is the book-to-market factor, RMW is the profitability factor, and CMA is the investment
factor.
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Table 10: Regression Tests for the FF-5 Model

IVOL→ Low 2 3 4 High Low 2 3 4 High

Panel A: Three-factor Ri,t −RF,t = ai + bi(RM,t −RF,t) + siSMBt + hiHMLi + εi,t

a t

Small 0.38 0.33 0.10 -0.19 -1.24 5.30 4.55 1.41 -2.19 -8.36

2 0.28 0.24 0.19 0.03 -0.73 4.25 3.46 2.61 0.38 -7.59

3 0.17 0.20 0.12 0.09 -0.47 2.56 2.86 1.72 1.10 -4.93

4 0.19 0.15 0.07 0.04 -0.33 2.44 1.96 0.96 0.56 -3.26

Big 0.09 0.10 0.02 -0.06 -0.09 1.57 1.88 0.35 -1.00 -1.00

Panel B: Five-factor Ri,t −RF,t = ai + bi(RM,t −RF,t) + siSMBt + hiHMLi + riRMWi + ciCMAiεi,t

a t(a)

Small 0.27 0.19 0.05 -0.10 -0.87 3.78 2.56 0.53 -0.90 -5.56

2 0.14 0.06 0.02 -0.08 -0.47 2.32 0.98 0.36 -1.12 -5.47

3 0.03 0.04 -0.05 -0.05 -0.25 0.41 0.61 -0.74 -0.63 -2.84

4 0.04 -0.03 -0.09 -0.07 -0.10 0.47 -0.36 -1.29 -0.91 -1.06

Big 0.01 -0.04 -0.09 -0.05 0.12 0.14 -0.74 -1.75 -0.86 1.45

b t(b)

Small 0.71 0.98 1.09 1.15 1.13 35.36 45.24 38.38 29.88 21.22

2 0.78 1.01 1.12 1.24 1.27 45.88 55.58 54.33 49.29 34.55

3 0.79 0.99 1.10 1.19 1.25 46.95 45.34 51.49 47.21 39.80

4 0.82 0.99 1.13 1.20 1.26 36.27 42.61 52.37 48.92 42.61

Big 0.83 0.97 1.05 1.11 1.18 56.75 66.03 75.18 69.87 46.26

s t(s)

Small 0.67 0.93 1.04 1.19 1.35 25.22 26.10 22.92 18.90 16.48

2 0.56 0.75 0.83 0.94 1.12 23.03 27.37 24.24 22.13 24.05

3 0.31 0.47 0.57 0.69 0.82 12.59 13.91 16.42 16.61 19.64

4 0.10 0.18 0.23 0.32 0.51 3.16 4.98 6.15 8.29 13.93

Big -0.28 -0.25 -0.17 -0.12 0.03 -13.11 -12.65 -7.28 -4.84 0.75

h t(h)

Small 0.40 0.35 0.34 0.28 0.22 9.72 6.79 4.50 2.82 1.93

2 0.34 0.33 0.26 0.18 -0.07 10.55 7.18 4.93 2.84 -0.88

3 0.33 0.35 0.28 0.17 -0.16 8.78 6.65 5.24 2.72 -2.51

4 0.30 0.26 0.21 0.12 -0.18 5.63 4.57 3.92 2.28 -3.25

Big 0.12 -0.04 0.05 0.06 -0.19 3.91 -1.55 1.38 1.68 -3.28

r t(r)

Small 0.28 0.35 0.17 -0.15 -0.83 4.94 5.22 1.97 -1.31 -6.32

2 0.32 0.42 0.41 0.32 -0.53 8.92 7.80 6.37 4.17 -7.79

3 0.31 0.41 0.43 0.35 -0.45 7.58 6.54 7.29 5.43 -7.99

4 0.31 0.40 0.37 0.27 -0.51 6.51 6.62 6.27 4.73 -8.81

Big 0.18 0.26 0.25 0.00 -0.42 4.59 7.23 5.55 0.11 -7.72

c t(c)

Small 0.07 0.08 -0.02 -0.22 -0.42 1.24 1.30 -0.24 -1.71 -2.05

2 0.14 0.15 0.10 -0.03 -0.39 3.07 3.03 1.86 -0.49 -4.11

3 0.19 0.05 0.10 0.02 -0.32 3.64 0.95 1.93 0.32 -3.67

4 0.21 0.15 0.12 0.07 -0.25 2.96 2.51 1.95 0.99 -2.79

Big 0.08 0.22 0.12 -0.05 -0.34 1.54 4.11 2.47 -1.03 -4.12

The LHS variables in each set of 25 regressions are monthly excess returns on the 25 Size-IV portfolios. The RHS
variables are excess market return RM − RF , the size factor SMB, the value factor HML, the profitability factor
RMW, and the investment factor CMA. Panel A shows intercepts from the three-factor model and Panel B shows
intercepts and slopes and the five-factor model. The sample period is July 1963 to December 2017.
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Table 11: Regression Tests for the FF-5-plus-IVFL Model

Five-factor plus IVFL: Ri,t −RF,t = ai + bi(RM,t −RF,t) + siSMBt + hiHMLi + riRMWi + ciCMAi + viIV FLiεi,t

a t(a)

Small 0.23 0.17 0.09 0.02 -0.61 3.25 2.33 1.00 0.15 -4.19

2 0.07 0.00 -0.01 -0.07 -0.33 1.22 0.07 -0.16 -0.94 -3.90

3 -0.05 -0.01 -0.07 -0.05 -0.12 -0.78 -0.14 -1.02 -0.71 -1.47

4 -0.04 -0.08 -0.11 -0.07 0.04 -0.56 -1.13 -1.65 -0.92 0.43

Big -0.05 -0.07 -0.11 -0.04 0.26 -0.92 -1.48 -1.95 -0.64 3.40

Small 0.74 0.99 1.06 1.07 0.94 36.29 48.77 41.31 32.23 19.59

2 0.83 1.05 1.14 1.23 1.16 53.42 64.33 62.59 53.95 47.78

3 0.84 1.02 1.11 1.20 1.16 53.67 55.37 52.28 47.62 46.81

4 0.88 1.03 1.15 1.20 1.16 39.94 50.03 56.69 48.60 45.35

Big 0.88 1.00 1.06 1.10 1.08 59.36 64.61 74.01 70.45 53.65

s t(s)

Small 0.76 0.96 0.94 0.92 0.71 14.81 15.48 13.57 11.04 8.66

2 0.73 0.89 0.92 0.91 0.75 17.62 17.66 15.75 14.74 12.47

3 0.49 0.60 0.62 0.71 0.50 11.17 9.52 11.25 12.78 10.44

4 0.29 0.31 0.29 0.33 0.18 5.75 5.33 5.39 6.33 3.01

Big -0.13 -0.15 -0.13 -0.15 -0.31 -4.69 -5.38 -3.62 -3.91 -4.93

h t(h)

Small 0.38 0.35 0.36 0.33 0.35 8.33 6.14 4.76 3.59 3.70

2 0.30 0.30 0.25 0.19 0.00 8.52 5.90 4.18 2.86 0.04

3 0.29 0.32 0.27 0.17 -0.10 7.36 5.49 4.80 2.64 -1.96

4 0.27 0.23 0.20 0.12 -0.12 4.83 3.87 3.57 2.22 -2.18

Big 0.09 -0.06 0.04 0.07 -0.12 3.25 -2.29 1.15 1.85 -2.10

r t(r)

Small 0.16 0.31 0.30 0.21 -0.02 1.81 3.16 2.76 1.73 -0.16

2 0.10 0.25 0.30 0.35 -0.06 1.44 2.71 2.97 3.55 -0.69

3 0.08 0.25 0.37 0.34 -0.05 1.07 2.43 4.45 4.31 -0.76

4 0.07 0.24 0.30 0.27 -0.09 0.93 2.57 3.77 3.96 -1.04

Big -0.00 0.14 0.21 0.05 -0.00 -0.04 3.90 4.23 0.93 -0.01

c t(c)

Small 0.00 0.06 0.05 -0.04 0.02 0.07 0.97 0.58 -0.34 0.12

2 0.02 0.05 0.04 -0.01 -0.14 0.37 1.17 0.84 -0.17 -2.02

3 0.06 -0.03 0.07 0.01 -0.10 1.44 -0.59 1.29 0.16 -1.43

4 0.08 0.07 0.08 0.07 -0.03 1.25 1.17 1.35 0.94 -0.33

Big -0.02 0.15 0.10 -0.03 -0.12 -0.45 3.30 2.05 -0.57 -1.77

v t(v)

Small -0.07 -0.03 0.08 0.22 0.52 -2.80 -0.83 2.17 4.48 10.33

2 -0.14 -0.11 -0.07 0.02 0.29 -6.88 -4.52 -2.79 0.73 6.28

3 -0.15 -0.10 -0.04 -0.01 0.26 -7.08 -3.63 -1.64 -0.47 8.13

4 -0.15 -0.10 -0.05 -0.00 0.27 -6.52 -4.14 -2.16 -0.16 8.80

Big -0.12 -0.08 -0.03 0.03 0.27 -7.86 -5.17 -1.52 1.45 8.96

The LHS variables in each set of 25 regressions are the monthly excess returns on the 25 Size-IV portfolios. The
RHS variables are the excess market return RM − RF , the size factor SMB, the value factor HML, the profitability
factor RMW, the investment factor CMA and IVFL, the return spread in univariate sort on conditional long-run
idiosyncratic volatility. The sample period is July 1963 to December 2017.
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Table 12: Summary Statistics for Tests of the FF-3, FF-5 and FF-5-plus-IVFL Models

Model Factors GRS p(GRS) A|ai| A|ai|
A|r̄i|

Aa2
i

Ar̄2i

As2(ai)
A|r̄i|

A(R2)

MKT SMB HML 6.76 0.0 0.24 0.77 0.91 0.05 0.88

MKT SMB HML RMW CMA 5.55 0.0 0.13 0.43 0.37 0.12 0.9

MKT SMB HML RMW CMA IVFL 5.15 0.0 0.11 0.36 0.21 0.2 0.91

This table reports statistics summarizing how well the FF-3, FF-5 and FF-5-plus-IVFL models explain
monthly excess returns on the 25 Size-IV portfolios. The table shows (1) the GRS statistics testing whether
the expected values of all 25 intercept estimates are zero; (2) p(GRS), the p-value for the GRS statistic; (3)
the average absolute value of the intercepts, A|ai|; (4) the average absolute value of the intercepts over the
average absolute value of r̄i, which is the average excess returns on portfolio i minus the average market
portfolio excess returns; (5) Aa2i /Ar̄

2
i , the average squared intercept over the average squared value of r̄i; (6)

As2(ai)/A|r̄i|, the average of the estimates of the variances of the sampling errors of the estimated intercepts
over Ar̄2i ; and (7) A(R2), the average value of the regression R2 corrected for degrees of freedom. The sample
period is July 1963 to December 2017.
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Appendix for the Short-Run and Long-Run

Components of Idiosyncratic Volatility and

Stock Returns

Yunting Liu 1

A Empirical Analysis using the Smoothed Estimates of Short-Run

and Long-Run Idiosyncratic Volatility

In this section, I present empirical results of using the smoothed estimates of short-run and

long-run idiosyncratic volatility.

A.1 Portfolio Analysis with Smoothed Estimates

Table A1 reports the performance of portfolios sorted by the smoothed estimates of conditional

long-run idiosyncratic volatility. Similar to the findings using filtered estimates, high long-run id-

iosyncratic volatility portfolios earn low returns. The quintile 5 portfolio with the highest smoothed

long-run idiosyncratic volatility earns a return of −0.18% for the SL model, and as low as −0.56%

for the PT model. The return spread between the quintile 1 and 5 portfolio for the PT model is

−1.57%, with a t-statistic of −3.64. Compared to the spread of −1.19% using the SL model, the

larger spread found in the PT model may arise because allowing for unit roots better captures the

dynamics of idiosyncratic volatility. The potential existence of unit roots further supports the fact

that there exists a highly persistent component in idiosyncratic volatility.

As for the conditional short-run component, Table A2 indicates that there is a significant positive

relation between conditional short-run idiosyncratic volatility and expected stock returns. For the

SL model, portfolios sorted by the filtered estimates ŝt and the smoothed estimates s̃t both reveal

positive relations between conditional short-run components and expected stock returns. The high-

minus-low short-run volatility portfolio earns an average monthly return of 0.19% for the filtered

estimates and 0.52% for the smoothed estimates. The statistical significance is also stronger for the

smoothed estimates, with a statistical significance of 3.67 over 2.81 of the filtered estimates. This

indicates that the model is relatively successful to capture the dynamics of idiosyncratic volatility

1Department of Finance, School of Economics, Peking University, Beijing, China, 100871;
Email: yuntingliu@pku.edu.cn
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and the relationship between idiosyncratic volatility and cross-sectional stock returns.

Table A1: Portfolios Sorted by the Smoothed Estimates of Conditional Long-Run Volatility

Panel A: Short- and Long-Run Volatility (SL) Model

Rank Mean Std. Dev. % Mkt Share FF-3 alpha

1 (low) 1.00 3.59 47.1% 0.19

[4.86]

2 0.99 4.81 32.3% -0.02

[-0.38]

3 0.95 6.40 13.6% -0.14

[-1.91]

4 0.53 8.43 5.6% -0.74

[-5.71]

5 (high) -0.18 11.34 1.5% -1.67

[-6.53]

5− 1 -1.19 9.87 -1.86

[-2.70] [-6.65]

Panel B: Permanent and Transitory Volatility (PT) Model

Rank Mean Std. Dev. % Mkt Share FF-3 alpha

1 (low) 1.01 3.60 47.4% 0.19

[4.94]

2 1.00 4.82 32.1% -0.01

[-0.16]

3 0.93 6.44 13.6% -0.17

[-2.17]

4 0.51 8.45 5.5% -0.75

[-5.66]

5 (high) -0.56 11.19 1.4% -2.03

[-8.29]

5− 1 -1.57 9.69 -2.23

[-3.64] [-8.27]

Portfolios are formed every month based on the smoothed estimates of long-run idiosyncratic volatility, l̃t.
Portfolio 1 (5) is the portfolio of stocks with the lowest (highest) volatilities. The statistics in the columns
labeled Mean and Std. Dev. are measured in monthly percentage terms and apply to total, not excess,
returns. The column 5 − 1 refers to the difference in monthly returns between portfolio 5 and portfolio 1.
The alpha column reports Jensen’s alpha with respect to the Fama-French (1993) three-factor model. Robust
Newey-West (1987) t-statistics with up to one lag are reported in square brackets. The sample period is July
1963 to December 2017.
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Table A2: Portfolios Sorted by Smoothed Estimates of Conditional Short-Run Volatility

Rank Mean Std. Dev. % Mkt Share FF-3 alpha

1 (low) 0.64 3.97 23.8% -0.21

[-3.97]

2 0.84 4.20 21.3% -0.04

[-1.03]

3 0.98 4.43 19.4% 0.07

[1.71]

4 1.12 4.82 18.8% 0.17

[3.54]

5 (high) 1.16 5.64 16.8% 0.09

[0.95]

5-1 0.52 3.18 0.30

[3.67] [0.52]

Portfolios are formed every month based on conditional short-run idiosyncratic volatility of ŝt or s̃t. Portfolio
1 (5) is the portfolio of stocks with the lowest (highest) volatilities. The statistics in the columns labeled
Mean and Std. Dev. are measured in monthly percentage terms and apply to total, not excess, returns.
The column 5− 1 refers to the difference in monthly returns between portfolio 5 and portfolio 1. The alpha
column reports Jensen’s alpha with respect to the Fama-French (1993) three-factor model. Robust Newey-
West (1987) t-statistics with up to one lag are reported in square brackets. The sample period is July 1963
to December 2017.
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A.2 Fama-MacBeth Regressions with Smoothed Estimates

In this section, I report Fama-MacBeth regression results using the smoothed estimates of

conditional short-run and long-run idiosyncratic volatility. The results are very similar to those

using the filtered estimates, except that using the smoothed estimates could lead to more significant

regression coefficients.

Table A3: Relationship between Idiosyncratic Risk and Expected Returns: Cross-Sectional Evi-
dence for the Short- and Long-Run Volatility (SL) Model

log vt ŝt l̂t s̃t l̃t Ret(−1) µt

-0.52

[-5.66]

2.41 -0.50

[6.10] [-4.01]

4.12 -0.75

[36.11] [-5.74]

-0.41 -4.78

[-4.37] [-10.62]

2.70 -0.48 -5.16

[6.81] [-3.74] [-11.43]

4.05 -0.79 -5.50

[35.69] [-5.83] [-12.26]

3.52 -0.34 -4.34 4.81

[8.93] [-2.66] [-10.19] [22.61]

1.22 -1.06 -4.63 4.55

[18.50] [-8.21] [-10.88] [21.91]

The average coefficient is the time-series average of monthly regression coefficients from July 1963 to De-
cember 2017, and the t-statistic is the average coefficient divided by its time-series standard error. The
t-statistic is reported in brackets.
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Table A4: Relationship between Idiosyncratic Risk and Expected Returns: Cross-Sectional Evi-
dence for the Permanent and Transitory Volatility (PT) Model

log vt l̂t l̃t Ret(−1) µt

-0.52

[-5.73]

-0.49

[-4.11]

-0.49

[-3.56]

-0.42 -4.79

[-4.55] [-10.59]

-0.48 -5.07

[-3.90] [-11.20]

-0.55 -5.65

[-3.83] [-12.47]

-0.26 4.88

[-2.12] [23.34]

-1.05 5.11

[-8.18] [26.06]

-0.26 -4.19 4.75

[-2.08] [-9.72] [22.90]

-1.08 -4.51 4.96

[-8.16] [-10.42] [25.69]

The average coefficient is the time-series average of monthly regression coefficients from July 1963 to De-
cember 2017, and the t-statistics is the average coefficient divided by its time-series standard error. The
t-statistic is reported in brackets.

5



B Further Investigation of the Long-Run Component of Idiosyn-

cratic Volatility

In this section, I further investigate the long-run component of idiosyncratic volatility by sepa-

rating the constant term φi from the long-run volatility defined previously. Recall that the short-run

and long-run idiosyncratic volatility model is defined as

Idiosyncratic Volatility : log vit = sit + lit (1)

Short-Run Component : sit+1 = ρiss
i
t + σisε

i
s,t

Long-Run Component : lit+1 = φi + ρill
i
t + σilε

i
l,t

Let φ̂t ≡ E(φ|y1, y2, yt−1) denotes the expectation of the constant term based on information

available at time t − 1. The expectation of the long-run component is already defined as l̂t ≡
Et−1(lt|y1, y2, ...yt−1). Thus the term l̂t − φ̂t captures the expectation of the long-run component

zeroing out the constant term.

Table B1 reports the performance of portfolios sorted by the long-run component zeroing out

the constant, l̂t − φ̂t. The portfolio with the highest idiosyncratic volatility (quintile 5) has an

average return of 0.79% per month. The difference in returns between the highest and lowest

idiosyncratic volatility portfolio is −0.20% per month, with a robust t-statistic of −1.31. Portfolio

analysis results for the expected constant term φ̂t are reported in Table B2. The portfolio with the

highest φ̂t earns 0.50% per month. The return spread between portfolios the highest and lowest φt

is −0.38% with a robust t-statistic of −1.19.

Thus, both parts of the long-run idiosyncratic volatility are negatively related to cross-sectional

stock returns. However, both the magnitude of return spreads and their statistical significance

are reduced from separating the long-run component into the constant and non-constant part. By

comparison, the return spread between highest and lowest expected long-run idiosyncratic volatility

−0.73% per month with a robust t-statistic of −2.10. This suggests that the long-run component

with the constant term incorporates more information and is more predictive for cross-sectional

stock returns.
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Table B1: Portfolios Sorted by the Idiosyncratic Volatility l̂t − φ̂t

Rank Mean Std. Dev. % Mkt Share FF-3 alpha Average l̂t − φ̂t

1 (low) 0.99 4.67 29.8% 0.17 -0.30

[2.90]

2 0.96 4.78 23.2% 0.12 -0.11

[2.23]

3 0.89 4.57 18.3% -0.00 -0.00

[-0.05]

4 0.85 4.58 15.7% -0.11 0.10

[-2.12]

5 (high) 0.79 5.30 13.0% -0.33 0.35

[-4.01]

5-1 -0.20 3.37 -0.5

[-1.31] [-4.34]

Portfolios are formed every month based on the idiosyncratic volatility, l̂t − φ̂t. Portfolio 1 (5) is the portfolio of
stocks with the lowest (highest) volatilities. The statistics in the columns labeled Mean and Std. Dev. are measured
in monthly percentage terms and apply to total, not excess, returns. The column 5 − 1 refers to the difference
in monthly returns between portfolio 5 and portfolio 1. The alpha column reports Jensen’s alpha with respect to
the Fama-French (1993) three-factor model. Robust Newey-West (1987) t-statistics with up to one lag are reported
in square brackets. Average l̂t − φ̂t is computed as the simple average of the long-run component zeroing out the
constant. The sample period is July 1963 to December 2017.
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Table B2: Portfolios Sorted by the Idiosyncratic Volatility φ̂t

Rank Mean Std. Dev. % Mkt Share FF-3 alpha Average φ̂t

1 (low) 0.88 3.80 44.3% 0.02 1.50

[0.56]

2 0.99 4.83 31.2% 0.03 1.93

[0.69]

3 1.04 5.98 15.8% 0.05 2.22

[0.77]

4 0.99 7.63 6.8% -0.07 2.51

[-0.64]

5 (high) 0.50 9.40 1.9% -0.69 2.90

[-4.43]

5-1 -0.38 7.61 -0.71

[-1.19] [-4.1]

Portfolios are formed every month based on the idiosyncratic volatility, φ̂t. Portfolio 1 (5) is the portfolio of stocks
with the lowest (highest) volatilities. The statistics in the columns labeled Mean and Std.Dev. are measured in
monthly percentage terms and apply to total, not excess returns. The column 5−1 refers to the difference in monthly
returns between portfolio 5 and portfolio 1. The alpha column report Jensen’s alpha with respect to the Fama-French
(1993) three-factor model. Robust Newey-West (1987) t-statistics with up to one lag are reported in square brackets.
Average φ̂t is computed as the simple average of the expected constant term φt in the long-run component. The
sample period is July 1963 to December 2017.
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Table B3: Portfolios Sorted by the Filtered Estimates of Expected Long-Run Volatility l̂t

Rank Mean Std. Dev. % Mkt Share FF-3 alpha Average l̂t

1 (low) 0.92 3.68 47.2% 0.09 1.45

[2.50]

2 1.00 4.77 32.0% 0.00 1.90

[0.06]

3 1.05 6.21 13.7% -0.01 2.21

[-0.1]

4 0.86 7.98 5.6% -0.31 2.52

[-2.73]

5 (high) 0.18 9.88 1.5% -1.15 3.00

[-6.26]

5-1 -0.73 8.26 -1.25

[-2.10] [-6.06]

Portfolios are formed every month based on the idiosyncratic volatility, l̂t. Portfolio 1 (5) is the portfolio of stocks
with the lowest (highest) volatilities. The statistics in the columns labeled Mean and Std. Dev. are measured in
monthly percentage terms and apply to total, not excess, returns. The column 5 − 1 refers to the difference in
monthly returns between portfolio 5 and portfolio 1. The alpha column reports Jensen’s alpha with respect to the
Fama-French (1993) three-factor model. Robust Newey-West (1987) t-statistics with up to one lag are reported in
square brackets. Average l̂t is computed as the simple average of the expected long-run component. The sample
period is July 1963 to December 2017.
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B.1 Transition Probabilities Across Quintile Portfolios

Table B4 below reports the transition probabilities across quintile portfolios sorted by the filtered

long-run or short-run idiosyncratic volatility. For the long-run volatility, the probability of staying

in the same portfolio at month t− 1 and t ranges 75.93% to 90.30% as reported in Panel A. High

probabilities along the diagonal shows that conditional long-run volatility is relatively persistent.

Panel B of Table B4 presents the results for the filtered short-run volatility. The probability of

staying in the same quintile portfolio ranges from 22.81% to 52.11%. These relatively low values

indicate that the short-run volatility is short-lived and die off quickly.

Table B4: Portfolio Transition Probabilities

Panel A: The Filtered Long-Run Volatility

Month t

1 (low) 2 3 4 5 (high)

Month

t− 1

1 (low) 90.30 9.40 0.26 0.03 0.01

2 9.34 78.82 11.41 0.39 0.04

3 0.21 11.43 75.93 12.08 0.35

4 0.05 0.29 12.01 77.42 10.23

5 (high) 0.02 0.04 0.24 9.97 89.74

Panel B: The Filtered Short-Run Volatility

Month t

1 (low) 2 3 4 5 (high)

Month

t− 1

1 (low) 31.10 15.633 6.22 15.50 31.55

2 15.87 26.12 17.48 24.96 15.56

3 6.37 17.55 52.11 17.76 6.22

4 15.54 25.15 17.86 26.12 15.33

5 (high) 30.97 15.70 6.24 15.45 22.81

This table reports the transition probabilities across portfolios sorted by the filtered long-run or short-run idiosyncratic
volatility. The numbers in the table are expressed in percentage terms.
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C Time-Series Plots of Idiosyncratic Volatilities

In this section, I plot a few time-series of the filtered short-run and long-run components of

idiosyncratic volatility. The randomly selected firms are Apple Inc, Nordstrom Inc, and Gilead

Science Inc. 2 As we can see from these graphs, the short-run component mostly fluctuates around

mean, zero. And it displays little persistence. On the contrary, variations in the long-run component

are relatively long-lived. The level of the long-run component could have persistent variations over

time and across firms. I also plot the filtered constant term φt and the filtered long-run component

zeroing out the constant term, l̂t− φ̂t. We can see that these two parts of the long-run idiosyncratic

volatility could have independent variations, and are not necessarily perfectly correlated.

2Their CRSP identifier PERMNO are 14593, 57817, and 77274 respectively.
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Figure C1: Time-Series Plots of Different Measures of Idiosyncratic Volatility for Apple
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Figure C2: Time-Series Plots of Different Measures of Idiosyncratic Volatility for Nordstrom
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Figure C3: Time-Series Plots of Different Measures of Idiosyncratic Volatility for Sprint
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D Estimating the Short-Run and Long-Run Idiosyncratic Volatil-

ity Model with Measurement Errors

In this section, I estimate the short-run and long-run volatility model with measurement errors

in realized idiosyncratic volatility. The short-run and long-run idiosyncratic volatility model in the

paper is defined as

Idiosyncratic Volatility : log vit = sit + lit (2)

Short-Run Component : sit+1 = ρiss
i
t + σisε

i
s,t

Long-Run Component : lit+1 = φi + ρill
i
t + σilε

i
l,t

In the paper, I report results treating the realized idiosyncratic volatility IVt as measuring

the true latent volatility vit without errors. In this section, I relax this assumption and introduce

measurement errors in the following way. I model the log of realized volatility as the log of latent

volatility vt plus a identically and independently distributed measurement error εu,t

log IV i
t = log vit + εu = sit + lit + εu,t (3)

The standard error of εu,t is denoted by σu, which is also to be estimated. The specification

of Equation 3 is still in a state-space from and can be estimated using a Kalman filter. The

following Table D1 reports parameter estimates of the model with measurement errors. As we can

see, estimates of the persistence parameters are not significantly affected by the introduction of

measurement errors. With measurement errors, the median of persistence parameters ρl and ρs

are 0.04 and 0.94. By comparison, they are −0.003 and 0.94 without measurement errors. The

introduction of measurement errors does reduce estimates of the standard deviation of shocks to the

short-run component. The median of σs is reduced from 0.31 to 0.22. The median of the standard

deviation of shocks to the long-run component, i.e., σl slightly decreases from 0.15 to 0.14.

However, the median of the standard deviations of measurement errors is 0.0001. This suggests

that for a fair amount of firms the data is not rich enough to efficiently separate the measurement

error from the short-run component. This problem could be severe if the short-run component is

close to being white noise. It would then be hard to distinguish between the short-run component

and the measurement error.
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Table D1: Parameter Estimates of Idiosyncratic Volatility Model

Panel A: The Short and Long Run Volatility (SL) Model with Measurement Errors

Variables ρs ρl σs σl σu

Mean -0.004 0.77 0.21 0.19 0.12

Median 0.04 0.94 0.22 0.14 0.0001

Panel B: The Short and Long Run Volatility (SL) Model without Measurement Errors

Variables ρs ρl σs σl

Mean -0.07 0.79 0.29 0.20

Median -0.003 0.94 0.31 0.15

This table summarizes the properties of parameter estimates for the short-run and long-run idiosyncratic
volatility processes. I first compute parameter estimates for each stock and then construct the mean and
median statistics across all stocks. The sample period is July 1963 to December 2017.

The following table D2 reports portfolio analysis results using the filtered estimates of the short-

run and long-run components. It can be seen that most results are very similar to those without

measurement errors. The spread between the quintile 1 and quintile 5 portfolio is about 0.18% for

the short-run component and −0.65% for the long-run model. These slightly smaller return spreads

compared to those without measurement errors may be caused by reduced precision in identifying

the short-run and long-run components.
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Table D2: Portfolios Sorted by the Filtered Estimates of Conditional Idiosyncratic Volatility with
Measurement Errors

Panel A: Filtered Estimates of the Long-Run Idiosyncratic Volatility

Rank Mean Std. Dev. % Mkt Share FF-3 alpha

1 (low) 0.94 3.72 46.2% 0.11
[2.93]

2 1.00 4.82 32.5% 0.01
[0.31]

3 1.02 6.14 14.2% -0.03
[-0.45]

4 0.84 7.80 5.7% -0.33
[-2.98]

5 (high) 0.29 9.67 1.3% -1.07
[-6.32]

5-1 -0.65 8.09 -1.18
[-1.87] [-6.24]

Panel B: Filtered Estimates of the Short-Run Idiosyncratic Volatility

Rank Mean Std. Dev. % Mkt Share FF-3 alpha

1 (low) 0.84 4.54 14.7% -0.06
[-1.17]

2 0.94 4.48 22.4% 0.05
[1.20]

3 0.88 4.59 25.5% -0.04
[-1.29]

4 0.95 4.44 23.2% 0.06
[1.51]

5 (high) 0.98 4.53 14.2% 0.04
[0.78]

5-1 0.18 1.90 0.10
[1.77] [1.36]

Portfolios are formed every month based on the filtered estimates of the conditional short-run or long-run
idiosyncratic volatility. Portfolio 1 (5) is the portfolio of stocks with the lowest (highest) volatilities. The
statistics in the columns labeled Mean and Std. Dev. are measured in monthly percentage terms and apply
to total, not excess, returns. The column 5− 1 refers to the difference in monthly returns between portfolio
5 and portfolio 1. The alpha column reports Jensen’s alpha with respect to the Fama-French (1993) three-
factor model. Robust Newey-West (1987) t-statistics with up to one lag are reported in square brackets.
The sample period is July 1963 to December 2017.
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E Monte Carlo Simulations

Because realized idiosyncratic volatility is strongly time-varying and has an average first-order

auto-correlation of about 0.39, Fu (2009) proposes that exponential generalized autoregressive con-

ditional heteroscedasicity (EGARCH) model could be used to capture the short-run variation in

conditional idiosyncratic volatility. Subsequent papers by Guo et al. (2014) and Fink et al. (2012)

argue that the EGARCH estimates of the conditional idiosyncratic volatility by Fu (2009) could

be subject to substantial look-ahead biases. The positive relation between the conditional idiosyn-

cratic volatility predicted by EGARCH model and cross-sectional stock returns found by Fu (2009)

is not robust. This section also investigates whether the EGARCH model is useful to capture vari-

ations in the short-run component of idiosyncratic volatility. I conduct Monte-Carlo simulations

to study this question. Simulation results find that the EGARCH predicted conditional volatil-

ity is positively correlated with the long-run component as opposed to the short-run component.

And the conditional idiosyncratic volatility predicted by EGARCH model is negatively related to

cross-sectional stock returns. This finding highlights that it is useful to model the short-run and

long-run components jointly to capture the dynamics idiosyncratic volatility.

E.1 A Discrete Time Model for Monte Carlo Simulations

Consider a simple discrete time model in which the daily returns of an individual stock are

characterized as

rit,d = σitε
i
t,d + γss

i
t + γll

i
t (4)

where for day d in month t, rit,d is stock i’s excess return. The residuals ηit,d ≡ σitε
i
t,d is the

idiosyncratic risk for month t whereas σit is the standard deviation of the residual. The following

definition is consistent with the notation in Section 2 of the paper. I define the idiosyncratic

volatility of stock returns for firm i in month t as vit

vit = σit
√
Nm
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where Nm is the number of trading days in month t for firm i. The volatility dynamics for vit follows

the specification in the previous section as

Idiosyncratic Volatility : log vit = sit + lit

Short-run Component :sit+1 = ρiss
i
t + σisε

i
s,t

Long-run component :lit+1 = φi + ρill
i
t + σilε

i
l,t

The log-volatility is the sum of two components, st and lt. The parameter γs and γl capture the

relationship between short-run and long-run component of idiosyncratic volatility and cross-section

of stock returns. For example, when γs = 0, there is no relationship between conditional short-run

idiosyncratic volatility and expected stock returns. It is worth emphasizing this is a very reduced

form way of capturing the cross-sectional relationship between idiosyncratic volatility and stock

returns. I remain silent on whether the cross-sectional relation is related to risk or not.

Without loss of generality, I assume the risk-free rate to be zero. For each stock, the monthly

excess return then takes the following form

Rit =

Nm∏
d=1

(1 + rit,d)− 1

In the simulation, these parameters are set as follows based on empirical estimates using the CRSP

data. I set γs to be 2.41 and γl to be −0.50, which are the average regression coefficients in

the Fama-Macbeth regressions using filtered estimates. The parameter of the process is set as as

ρl = 0.94 which is the median persistence parameter of the long-run component. The persistence of

short-run component is set to be ρs = −0.003, the median persistence parameter of the short-run

component. And σs and σl are the volatility of shocks to the short-run and long-run components,

which can be set to 0.31 and 0.15 respectively based on the empirical estimates. The constant

φi is set to be uniformly distributed with a mean of 2.43 with a standard deviation of 0.62. The

numbers correspond to the empirical estimates using CRSP data. In simulated data, each stock

has 230 months of daily stock returns observations, which is the median number of daily stock

observations for CRSP common stocks. For illustration, I investigate cross-sectional implications

using 1000 stocks; more stocks do not affect the results in any statistically significant manner.

In the simulated data, the autocorrelations of realized idiosyncratic volatility decays quickly over

short periods but slower over longer periods. The first order autocorrelation of realized volatility

is 0.42, second order to be 0.39, third order to be 0.35 and the autocorrelation of 12 months lag is

0.16. These autocorrelations approximately match the empirical estimates reported in the Panel B

of Table 1 in the paper.
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To evaluate the quantitative relationship between the conditional idiosyncratic volatility pre-

dicted by the EGARCH model and cross-sectional stock returns, I consider Fama–MacBeth regres-

sions by regressing stock returns on conditional EGARCH volatility obtained using the full-sample

of simulated data. The EGARCH(p,q) model is modeled as 3

Rit = αit + εit (5)

where αit is the intercept term, εit is assumed to have a serially independent normal distribution

εit ∼ N(0, σit
2
). The conditional variance σit

2
follows

log σit
2

= ai +

p∑
l=1

bi,l log σit−l
2

+

q∑
k=1

ci,k

{
θ

(
εit−k
σit−k

)
+ κ

[∣∣∣∣∣ εit−kσit−k

∣∣∣∣∣−
(

2

π

)1/2]}
(6)

Estimating EGARCH model produces an average coefficient of b1 as 0.91 and the coefficient of

c1 is 0.61. Therefore, the persistence parameter of idiosyncratic volatility b1 in EGARCH model is

largely influenced by the long-run dynamics of idiosyncratic volatility. And the average regression

coefficient of stock returns on the conditional idiosyncratic volatility obtained by EGARCH model

is -0.65, with a t-statistic of −3.59. This indicates that the conditional volatility predicted by

the EGARCH model largely captures the conditional volatility of the long-run component instead

of the short-run component. This is intuitively plausible because the conditional volatility is a

positive function of lagged volatility, which largely consists of the persistent long-run component.

Hence, we would expect a negative relationship between the conditional volatility estimated by the

EGARCH model and expected stock returns. These simulation results demonstrate that modeling

the short-run and long-run components of idiosyncratic volatility jointly is crucial to capture the

information of conditional volatility over different horizons.

F Additional Forecasting Regressions

In this section, I run additional forecasting regressions to investigate whether the conditional

long-run idiosyncratic volatility is useful to forecast market returns4. As explained by Campbell

(1992), the Intertemporal Asset Pricing Model (e.g., Merton 1973) suggests that variables that

proxy for the aggregate investment opportunities should also forecast stock-market returns. If the

3I report the EGARCH(1,1) estimates while EGARCH with different lags produce similar results. I also consider
specifications of estimating the time t EGARCH volatility recursively using the information available up to time t−1.
Since stock returns are not skewed in my simulation, the look-ahead bias documented by Guo et al. (2014) doesn’t
exist. Hence, similar results are produced using full sample and information up to t− 1.

4Thank one referee for suggesting this point.
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conditional long-run idiosyncratic volatility is a proxy for investment opportunities, it may also

forecast market returns. Following Guo and Savickas (2010), I use the returns on stocks with

high long-run idiosyncratic volatility in the previous twelve quarters to forecast market returns in

the following four quarters. The following table reports that the predictive power is strongest for

the quintile portfolio with the highest volatility. The t-value is −4.65, and the R2 is 0.11. By

comparison, these statistics are −2.0 and 0.02 for the quintile portfolio with the lowest conditional

long-run volatility. These regression results lend support to the story that conditional long-run

idiosyncratic volatility is positively related to future investment opportunities.

Table F1: Forecasting Regressions Results

Rank Coefficients t-value R2

1 (low) -0.30 -2.00 0.02

2 -0.46 -2.72 0.03

3 -0.50 -3.88 0.07

4 -0.38 -3.52 0.06

5 (high) -0.37 -4.65 0.11

This table reports forecasting regressions statistics of regressing market returns on returns of portfolios sorted by
the conditional long-run idiosyncratic volatility. The sample period is July 1963 to December 2017. The coefficients
column reports regression coefficients of idiosyncratic volatility portfolio returns, and the t-value column reports
robust Newey-West (1987) t-statistics with up to one lag. The R2 column shows regression R2s.
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G The Model

In this section, I construct a model similar to the models of Berk et al. (1999) and Carlson et

al. (2004) to shed light on the negative relation between idiosyncratic volatility and stock returns.

In particular, the model may be useful to explain why the long-run idiosyncratic volatility could

be negatively related to cross-sectional stock returns.

G.1 The environment

Assume that each firm i, i ∈ {1, ...I} produces a single commodity that can be sold at time-t

in the product market with productivity Pi,t,

Pi,t = Xi,tZt (7)

where Xi,t is the idiosyncratic productivity component and Zt is the aggregate productivity com-

ponent with dynamics

dZt/Zt = µdt+ σdBt (8)

dXk,t/Xk,t = σidBi,t (9)

The parameter µ denotes the growth rate of aggregate productivity, σ the volatility of aggregate

productivity, σi the volatility of idiosyncratic productivity, and dBi,t and dBt are the increments

of two independent Brownian motions, The innovation to idiosyncratic productivity dBi,k is inde-

pendent across firms. Let pi,t denotes the log of productivity for firm i, the law of motion for pi,t

would therefore be

dpi,t = µpdt+ σdBt + σidBi,t (10)

where µp = µ− 1
2σ

2 − 1
2σ

2
i

Following several papers investigating the cross-section of equity returns (Berk et al. (1999),

Carlson et al. (2004), Zhang (2005))), I assume a stochastic discount factor with the following

process:

dπt
πt

= −rdt− θdBt (11)

where θ is the constant market price of risk, and r is the risk-free rate. Exposure to aggregate

productivity shocks is priced while exposure to idiosyncratic productivity shocks is not.
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We can carry out the valuation of firms under the risk-neutral measure Q. Working under Q
measure, the dynamics of the aggregate component of the productivity is

dZt/Zt = µ̂dt+ σdBt (12)

where the risk neutral drift µ̂ = µ− σθ.

G.2 Assets in Place

An asset in place is a project that generates payoffs Yi,t with scale S

Yi,t = Pi,tS (13)

where Pi,t is the productivity of firm i. Let the production cost be C per unit of output, so the

profit at time t is Pi,t − c. Therefore, the valuation of an asset in place is

A(pi,t) = EQ
t

[ ∫ ∞
t

e−r(ω−t)(Pi,t − C)Sdω

]
=

exp(pi,t)

r − µ̂
S − C

r
S (14)

Because idiosyncratic risk is not priced, the value of assets in place is independent of the idiosyn-

cratic productivity volatility.

The dynamics for A(pi,t) therefore follows

dA = SdPi,t =
S

r − µ̂
Pi,t

(
µdt+ σdBt + σi,tdBi,t

)
(15)

G.3 Growth Options

A growth option is the right to obtain the above project by making an irreversible investment

of K units of the goods. The firm is endowed with an opportunity to obtain such project and

can choose when it is optimal to do so. The optimal policy is to exercise the option if the log

productivity pi,t is above the threshold p∗i . Let G(pi,t, p
∗
i ) denotes the value of the growth option

and τ denotes the moment the option is exercised. The value of the growth option is determined

by the current level of productivity and the threshold to exercise the option P ∗i . When the current

productivity pi,t is above p∗i , the growth is exercised immediately.

Prior to exercise, t < τ , the expected present-value of the project’s payoff gives the value of the
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option

G(pi,t, p
∗
i ) = EQt

[
e−r(τ−t)

(
A(p∗i )−K

)]
; t ≤ τ (16)

I prove the following proposition in Section H.

Proposition 1. The value of the growth option is given by

G(pi,t) =


A(p∗i )−K; pi,t ≥ p∗i(
Pi,t

P ∗
i

)l2(
A(p∗i )−K

)
; pi,t < p∗i

(17)

where

p∗i =
l2[C ∗ S +K(r − µ̂p,i)]

(l2 − 1)S
; l2 =

−µ̂p,i +
√
µ̂2p,i + 2rσ2p,i

σ2p,i

µ̂p,i = µ̂− 1

2
(σ2 + σ2i ); σp,i =

√
σ2 + σ2i

Prior to exercise, the value of the growth option depends on the level of idiosyncratic volatility.

Because ∂l2/∂σi < 0, ceteris paribus, the value of the growth option is increasing in the volatility

of idiosyncratic productivity shocks. This is an important valuation property that growth options

have due to Jensen’s inequality. Hence, the option is worth more if the idiosyncratic volatility of

productivity is higher.

G.4 Expected Return

Having discussed the valuation, I now turn to the model-implied returns. The return on assets

in place is independent of production scale because the the value of assets in place displays constant

return to scale with respect to production scale. The return of assets RA,t can derived from (14) as

RA,t =
dAt + S(Pt − C)dt

At
(18)

= (r − µ̂)dt+ L(pt)

(
µdt+ σdBt + σi,tdBi,t

)
(19)

where L(pt) = P
r−µ̂/(

P
r−µ̂ −

c
r ). The return on assets in place is exposed to both aggregate idiosyn-

cratic productivity shocks and idiosyncratic productivity shocks and risk exposures are amplified

by a factor L(pt), which captures the operating leverage.
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The return on growth options is given by

RG,t =
dGt
Gt

= l2(updt+ σdBt + σidBi,t) (20)

The exposure to aggregate and idiosyncratic productivity shocks is amplified by the factor l2. In

particular, the factor l2 is decreasing in idiosyncratic volatility σi. This implies that the higher is

the idiosyncratic volatility of productivity shocks, the lowers is the expected return on the option

itself.

The intuition is as follows. When idiosyncratic volatility increases, the value of growth options

could rise due to convexity. In the meantime, growth options’ sensitivity to systematic risk factors

could decrease because the relative magnitude of such options’ value that is related to systematic

risk falls. This channel drives down the expected return when idiosyncratic volatility is higher.

Therefore, long-run idiosyncratic volatility serves as a proxy for exposure to systematic risk factors.

G.5 Why Are Long-Run Idiosyncratic Volatility Related to Cross-Sectional

Stock Returns?

This paper has demonstrated empirical results that there is a negative relationship between the

conditional long-run idiosyncratic volatility and cross-sectional stock returns. Such relation may

be interpreted through the theoretical model in this Section G. In this real-option-based model,

ceteris paribus, high idiosyncratic volatility increases the value of growth options, which lowers

the exposure of firm equity to systematic risk factors. Therefore, firms with higher idiosyncratic

volatility would have lower average returns. This implication is delivered from a comparative static

sense and therefore the difference in volatility is assumed to be permanent. However, if such

difference in volatility is relatively persistent over time, the comparative static result could give

a close approximation. Thus, the persistent long-run idiosyncratic volatility could be negatively

related to cross-sectional stock returns. And the long-run idiosyncratic volatility is proxying for

exposures to systematic risk factors.

H Proof of Proposition 1

Using pt = lnPt as the state variable, we have (using Ito’s Lemma and Girsanov’s Theorem)

under Q,

dp = µ̂pdt+ σpdB̂t (21)
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where µ̂p,i = µ̂− 1
2(σ2 + σ2i ); σp,i =

√
σ2 + σ2i , dB̂t = σ

σp
dBt + σi

σp
dBi,t,

Prior to exercise, the associated Hamilton-Jacobi-Bellman (HJB) equation is

rG(p, p∗i ) = µ̂p,iGp(p, p
∗
i ) +

1

2
σ2p,iGpp(p, p

∗
i ), all p < p∗i (22)

This is a second order linear ordinary equation with constant coefficients. Hence any solution has

the form

G(pi,t) = c1e
l1pi,t + c2e

l2pi,t (23)

where c1, c2 are constants that must be determined from boundary conditions. And

l1 =
−µ̂p,i − J

σ2p,i
≤ 0, l2 =

−µ̂p,i + J

σ2p,i
≥ 0, J ≡

(
µ̂2p,i + 2rσ2p,i

)1/2

≥ µ (24)

To ensure that the growth option’s value is finite when pi,t tends to −∞, c1 = 0.

Value matching at p∗i yields

c2 =
A(P ∗i )−K

P ∗i
l2

Therefore, the value of the growth option is given by

G(pi,t) =


A(P ∗i )−K; pi,t ≥ p∗i(
Pi,t

P ∗
i

)l2(
A(p∗i )−K

)
; pi,t < p∗i

(25)

Smooth pasting condition ∂G/∂P ∗i continuous at P ∗i yields

A′(p∗i )

A(p∗i )−K
= l2 (26)

Hence, the threshold

p∗i =
l2[C ∗ S +K(r − µ̂p,i)]

(l2 − 1)S
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